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1. Overview
In this supplementary material, more details about the pro-
posed SuperSVG method and more experimental results
are provided, including:
• More details about our Dynamic Path Warping (DPW)

(Section 2);
• More details for the experiments (Section 3);
• Comparison experiments on Emoji dataset (Section 4);
• More ablation studies (Section 5);
• Additional comparison experiments (Section 6);
• More results of our method (Section 7).

2. Details about Our Dynamic Path Warping
Problem Insight. Given the generated path sequence
S′ = {s′1, s′2 · · · s′m} and the target path sequence S =
{s1, s2 · · · sn}, we aim to find the distance between the
two path sequences in path parameter space. Denote the
distance matrix between each path pair of S and S′ as
D = {di,j}n×m, with di,j being the distance between si
and s′j . Our DPW aims to find an optimal matching func-
tion match(j) that minimizes the objective function:

m∑
j=1

∥dmatch(j),j∥, (1)

where match(j) ≥ match(j − 1)1.
We transform the problem into finding an optimal path

in a Cartesian grid. In Fig. 1, the distance matrix can be
represented as an m×n grid, where the yellow point corre-
sponds to one mapping of match(j) = i, while the black
point indicates non-matching (i.e., not added in the objec-
tive function), with the yellow point denoted as (i, j, 1)
and the black point denoted as (i, j, 0). Therefore, any
matching function match(j), where 1 ≤ j ≤ m, can be
represented by m yellow points in the grid, with each yel-
low point in a different row. Considering every two adja-
cent rows have two yellow points (match(j−1), j−1, 1)
and (match(j), j, 1), with match(j − 1) ≤ match(j),
by adding black points between the two yellow points
when they are not adjacent, the m yellow points and the
added black points can form a path in the grid that starts
from the bottom left corner to the top right corner, which

*Corresponding author.
1Each generated path s′j , should be matched to one and only one

target path si but a target path si may be unmatched to any generated
path s′j .

Figure 1. Illustration of our Dynamic Path Warping. Given a
distance matrix Dn×m (with di,j being the distance between si
and s′j) represented as a grid, our DPW aims to find an optimal
grid path composed of yellow and black points, to minimize the
objective function (Eq.(1)). The yellow point (i, j, 1) represents
a matching match(j) = i, and the black point (i, j, 0) repre-
sents non-matching match(j) ̸= i (i.e., it is not counted in the
objective function).

only consists of rightward, upward, and diagonal up-right
movements, and can be further computed by dynamic pro-
gramming. In this way, the problem of finding an optimal
matching function is transformed to finding an optimal
path in the distance grid.

Specifically, the path should satisfy the following con-
ditions:

1) For each row of the path, there should be one and
only one yellow point, i.e., there will not be two adjacent
yellow points in the same row (with the same j).2

2) The path contains both the yellow points (i, j, 1) that
represent match(j) = i and black points (i, j, 0) that rep-
resent match(j) ̸= i.

3) For each point in the path, it can only move to the
right, upward, or diagonally upward to the right.

It can be easily seen that the final value of DPW only
depends on the yellow points (matching points), while
the values of black points (non-matching points) are not

2The underlying reason is that we require one generated path to only
correspond to one target path, in order to avoid a single generated path
being the average of several target paths.
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Figure 2. Path simplification for DPW. (a) Property 1: The
movement from (i, j) to (i+1, j+1) can be simplified to mov-
ing from (i, j) rightward to (i + 1, j, 0) (black point) and then
moving upward to (i + 1, j + 1). (b) Property 2: Although
there are multiple paths (composed of n black points) between
two yellow points (i, j, 1) and (i′, j + 1, 1) in adjacent rows,
they are equivalent in terms of their objective function values.
Therefore, we can ignore the transition modes represented by
the dashed arrows, and only need to consider the solid arrows.

counted in the objective function. Then, we can simplify
the form of the path for DPW based on the following prop-
erties.

Property 1. We can ignore movements that are diago-
nally upwards to the right (i.e., from (i, j) to (i+1, j+1)).

Explanation 1. For any diagonal up-right movement
from colored point (i, j) (black or yellow) to point (i +
1, j + 1) (Fig. 2(a)), it is equal to first moving to the right
to the black point (i + 1, j, 0) and then moving upwards
to (i + 1, j + 1): By adding the intermediate black point
(i + 1, j, 0), 1) the colors of the two endpoints (i, j), and
(i + 1, j + 1) are not changed, and 2) the intermediate
black point (i+1, j, 0) does not contribute to the value of
the DPW objective function. Therefore, we can consider
only rightward and upward movements.

Property 2. We can consider only four possible state
transition modes: (i, j, 1) → (i, j +1, 1), (i, j, 1) → (i+
1, j, 0), (i, j, 0) → (i+1, j, 0), and (i, j, 0) → (i, j+1, 1).

Explanation 2. For two yellow points (i, j, 1) and
(i′, j + 1, 1) in adjacent rows, their positional relation-
ship can be summarized into Fig. 2(b), where the number
of black points n between them is larger than or equal to
03. When n = 0, (i, j, 1) just moves upward to (i, j+1, 1).
When n > 0, the paths between (i, j, 1) and (i′, j + 1, 1)
can be any composition of the dashed and solid arrows
that moves from (i, j, 1) to (i′, j + 1, 1) in Fig. 2(b), i.e.,
there are different ways to add black points between the
two yellow points to connect into a path. However, all
the possible paths contribute to the same result since the
value of the DPW objective function only depends on the
yellow points. Considering the different paths between

3Since here i = match(j) ≥ match(j − 1) = i′.

(a) (b)

(c) (d)

(i-1, j, 0) (i, j, 0)

(i, j-1, 0)

(i-1, j, 1) (i, j, 0)

(i, j-1, 1)

(i-1, j, 0) (i, j, 1)

(i, j-1, 0)

(i-1, j, 1) (i, j, 1)

(i, j-1, 1)

invalid invalid

invalid invalid

valid valid

validvalid

Figure 3. The illustration of valid paths and invalid paths after
path simplification for DPW. There are 8 transition modes in to-
tal. But according to the Properties 1 and 2, half of the modes
can be ignored (set as invalid), which greatly simplifies the dy-
namic programming process.

these two yellow points are equal in objective function val-
ues, we can simplify the paths by ignoring the transition
modes represented by the dashed arrows, and only need
to consider the transition denoted by solid arrows. There-
fore, there are only 4 remaining state transition modes
(Fig. 2(b)):
(1) (i, j, 1) → (i, j + 1, 1) (yellow upward to yellow),
(2) (i, j, 1) → (i+ 1, j, 0) (yellow rightward to black),
(3) (i, j, 0) → (i+ 1, j, 0) (black rightward to black),
(4) (i, j, 0) → (i, j + 1, 1) (black upward to yellow).

Dynamic Programming Solution. With the simpli-
fied state transition modes, we can compute our DPW
by dynamic programming. Specifically, we define pi,j as
the minimum accumulated distance when going from the
start point (1, 1) to the yellow (matching) point (i, j, 1),
and qi,j as the minimum accumulated distance when go-
ing from the start point (1, 1) to the black (non-matching)
point (i, j, 0). According to Properties 1 and 2, there are
only 4 state transition modes:

(1)pi,j−1 → pi,j ,

(2)pi−1,j → qi,j ,

(3)qi−1,j → qi,j ,

(4)qi,j−1 → pi,j ,

(2)

which are shown in Fig. 3 (yellow for p and black for q).
Therefore, we have the state transition function:

pi,j = di,j +
γ

min(qi,j−1, pi,j−1),

qi,j =
γ

min(qi−1,j , pi−1,j),

(3)

where di,j is the distance between path si and path s′j ,
and the final value of our DPW objective function is
minγ(pn,m, qn,m).

Overall, our DPW can be regarded as an extended
version of DTW [8], with our objective function specif-
ically designed for measuring the distance between two
SVG path sequences. Although there are other versions
of DTW designed for different problems, to the best of



our knowledge, our DPW is the first differentiable version
that aims at the specially designed objective of alignment
of SVG path sequences.

3. More Details for the Experiments

More Implementation Details. In the experiments of the
main paper, we have evaluated the performance of Su-
perSVG under different numbers of paths. For a certain
number of paths n, we assign about half of the paths to
the coarse-stage model and half to the refinement-stage
model. Specifically, with our path efficiency loss LPE ,
our coarse-stage model predicts around 32 visible paths
for a superpixel on average. Therefore, we decompose the
target image into n1 = n

2×32 superpixels and employ the
coarse-stage model to predict SVG paths for each of them.
We combine all the visible paths output from the coarse-
stage model, and employ the refinement-stage model to
add more paths onto each superpixel repeatedly until the
total path number reaches n.

Evaluation Metrics. In the experiments, we use four
metrics to evaluate the vectorization results, comparing
the rendered image of the output SVG to the target image:

(1) MSE Distance: Mean Squared Error (MSE) is
a widely used metric in image processing to assess the
quality of image reconstruction. It measures the average
squared difference between the original and reconstructed
images, with lower MSE values indicating better image
fidelity.

(2) PSNR: The Peak Signal-to-Noise Ratio (PSNR) is
one of the most prevalent and extensively utilized metrics
for assessing image quality. A higher PSNR value indi-
cates a superior quality of image reconstruction.

(3) LPIPS: The Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [18] is a perceptual metric utilized for
assessing the similarity between two images. A lower
LPIPS value indicates a higher similarity between the out-
put image and the target image.

(4) SSIM: Structure Similarity Index Measure (SSIM)
[16] is derived from three aspects of image similarity: lu-
minance, contrast and structure, based on the idea that
the pixels have strong inter-dependencies especially when
they are spatially close. The higher the SSIM score is, the
more similar the two images are.

Network Architecture. Our Coarse-stage model
consists of three modules: one vision transformer en-
coder; one cross-attention module; and one self-attention
module. 1) The vision transformer encoder [9] employs
the ViT implementation from PyTorch Image Models
(timm) [5], which takes an 224 × 224 image as input and
splits the image into patches (tokens) with size 16 × 16.
2) The cross-attention module takes the encoded feature
as the Key and Value, and takes the learnable path queries
as the Query. Then the cross-attention module is followed
by a two-layer MLP with GELU activation. 3) Moreover,
the self-attention module is employed to further process
the output from the cross-attention layer to project the im-
age features into path parameters. And the self-attention
module is also followed by a two-layer MLP with GELU
activation.

Our Refinement-stage model first employs a three-

20 Paths

4 Paths

MSE=0.0011
T=0.01s

MSE=0.0011
T=58.61s

MSE=0.0226
T=1.44s

MSE=0.1411
T=0.14s

Target DiffVGIm2Vec LIVE Ours

MSE=0.0011
T=0.01s

MSE=0.0011
T=372.64s

MSE=0.0040
T=2.26s

MSE=0.0216
T=0.15s

Figure 4. Comparison on EMOJIs [3]. We achieve the best re-
construction accuracy and highest speed (paths number 4 and
20).Table 1. Ablation study on different superpixel methods.

Method MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑

LSC [11] 0.0148 20.25 0.4631 0.6952
SEEDS [15] 0.0042 24.65 0.4333 0.7777

SpixelFCN [17] 0.0050 23.81 0.4576 0.7562
SNIC [6] 0.0038 25.26 0.4125 0.7997

SLIC-compact=10 0.0050 24.15 0.4388 0.7650
SLIC-compact=20 0.0040 25.02 0.4205 0.7900

SLIC-compact=30 (Ours) 0.0032 26.04 0.4075 0.8111

layer convolution network with 3× 3 convolution kernels
to encode the current canvas and target superpixel into a
3× 224× 224 feature map. And then it employs the same
network as the coarse-stage model to project the image
features into 128 × 27-dimension output. At last, a fully
connected layer is employed to map it into path parame-
ters with 8× 27 dimension. For more details, please refer
to the code provided in the supplementary material.

4. Comparison on Emoji
Since Im2Vec [13] is domain-specific and struggles to
vectorize complex images, we compare with it on EMO-
JIS dataset [3] using its pretrained model. As shown in
Fig. 4, our SuperSVG-B achieves the best reconstruction
accuracy and highest speed.

5. More Ablation Studies
Ablation on Different Superpixel Methods. We conduct
ablation studies on using different superpixel methods: we
compare with using the representative superpixel methods
including LSC [11], SEEDS [15], SpixelFCN [17] and
SNIC [6], as well as SLIC [7] with different compactness
(10, 20 and 30), to decompose the target image into su-
perpixels, and then vectorize each superpixel separately.
The comparison results with 1,000 SVG paths are shown
in Table 1. It can be seen that SLIC works better with our
proposed SVG synthesis framework, and a higher com-
pactness in SLIC results in a better performance.

Ablation on Self-attention Module. We further con-
duct ablation studies on the number of self-attention mod-
ules in both our coarse-stage and refinement-stage models.
In our model design, we employ one self-attention module
each in coarse-stage and refinement-stage models. Then,
we train 3 additional versions for each of the coarse-stage
and refinement-stage models with 2, 4 and 8 self-attention
modules respectively. The comparison results with 1,000
SVG paths are shown in Table 2. It can be seen that, as the
number of the self-attention modules increases, the per-
formance of the model does not have an obvious improve-
ment. Therefore, we only employ one self-attention mod-



Table 2. Ablation study on the number of self-attention modules.

Coarse-stage Model MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑
Self-attn×1 (Ours) 0.0032 26.04 0.4075 0.8111

Self-attn×2 0.0032 26.00 0.4079 0.8109
Self-attn×4 0.0034 25.80 0.4146 0.8081
Self-attn×8 0.0033 25.98 0.4080 0.8102

(a) Ablation on the number of self-attention modules in the
coarse-stage model.

Refinement-stage Model MSE ↓ PSNR ↑ LPIPS ↓ SSIM ↑
Self-attn×1 (Ours) 0.0032 26.04 0.4075 0.8111

Self-attn×2 0.0034 25.78 0.4135 0.8072
Self-attn×4 0.0033 25.89 0.4092 0.8096
Self-attn×8 0.0032 26.01 0.4080 0.8108

(b) Ablation on the number of self-attention modules in the
refinement-stage model.

ule to achieve a good vectorization quality while keeping a
higher efficiency and fewer learnable parameter numbers.

6. Additional Comparison Experiments
In this section, we show more comparison results with
the state-of-the-art vectorization methods, LIVE [12], Dif-
fVG [10], Adobe [1] and Potrace [14] under 500, 2,000
and 4,000 SVG paths. The results are shown in Figures 5–
7. It can be seen that under the same number of SVG
paths, our SuperSVG can reconstruct more details than the
other methods in both the foreground and the background
regions.

7. More Results of Our Method
To show the effectiveness of our model, we show more ex-
perimental results on high-resolution in-the-wild data col-
lected from the Internet [2, 4]. We vectorize all the test
images into 4,000 SVG paths using our SuperSVG-B and
SuperSVG-F, and the results are shown in Figures 8–11.
It can be seen that our SuperSVG achieves a good vector-
ization quality with rich details.
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Ragan-Kelley. Differentiable vector graphics rasterization
for editing and learning. ACM Transactions on Graphics
(TOG), 39(6):1–15, 2020. 4

[11] Zhengqin Li and Jiansheng Chen. Superpixel segmenta-
tion using linear spectral clustering. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1356–1363, 2015. 3

[12] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16314–16323, 2022. 4

[13] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and
Niloy J Mitra. Im2Vec: Synthesizing vector graphics with-
out vector supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7342–7351, 2021. 3

[14] Peter Selinger. Potrace: a polygon-based tracing algorithm,
2003. 4

[15] Michael Van den Bergh, Xavier Boix, Gemma Roig, Ben-
jamin De Capitani, and Luc Van Gool. SEEDS: Super-
pixels extracted via energy-driven sampling. In Computer
Vision–ECCV 2012: 12th European Conference on Com-
puter Vision (ECCV), pages 13–26. Springer, 2012. 3

[16] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004. 3

[17] Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Su-
perpixel segmentation with fully convolutional networks.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 13964–13973, 2020.
3

[18] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 586–595, 2018. 3

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://free-images.com/
https://github.com/googlefonts/noto-emoji
https://github.com/googlefonts/noto-emoji
https://pixabay.com/
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models


Path Num=500

Target

SuperSVG-B SuperSVG-F LIVE

DiffVG Adobe Potrace

SuperSVG-B SuperSVG-F LIVE

DiffVG Adobe Potrace

Target

SuperSVG-B SuperSVG-F LIVE

DiffVG Adobe Potrace

Target

Figure 5. More comparison with the state-of-the-art methods under 500 SVG paths.
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Figure 6. More comparison with the state-of-the-art methods under 2,000 SVG paths.
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Figure 7. More comparison with the state-of-the-art methods under 4,000 SVG paths.
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Figure 8. More of our results under 4,000 paths.
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Figure 9. More of our results under 4,000 paths.
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Figure 10. More of our results under 4,000 paths.
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Figure 11. More of our results under 4,000 paths.
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