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A. Implementation

A.1. Network Architectures

Motion Encoder and Decoder. The motion encoder is
based on the Pix2PixHD [19] architecture with 3 En-
coder blocks of [Conv2d, Batch- Norm, ReLU], ResNet [5]
blocks, and 3 Decoder blocks of [ReLU, ConvTranspose2d,
BatchNorm]. The motion decoder has 2 Decoder blocks.
Volume Renderer. We use a 5-layer MLP with a skip con-
nection from the input to the 3th layer as in DeepSDF [13].
From the 4th layer, the network branches out two heads, one
to predict density with one fully-connected layer and the
other one to predict color features with two fully-connected
layers.
Super-Resolution. To super-resolve low-resolution volu-
metric features to low-resolution images, we first bilinearly
upsample the features by 2× and then feed the upsampled
features into two convolutional layers with a kernel size of
3 to upsample the images by a factor of 2.
Surface-based Triplane. The size of the triplane is 256 ×
256× 48.
Discriminator. We adopt the discriminator architecture of
PatchGAN [7] for adversarial training. Note that differ-
ent from EG3D [2] that applies the image discriminator at
both resolutions, we only supervise the final rendered im-
ages with adversarial training and supervise the volumetric
features with reconstruction loss.

A.2. Optimization

SurMo is trained end-to-end to optimize EM, DM, and
renderers G1, G1 with 2D image loss. Given a ground truth
image Igt, we predict a target RGB image I+RGB with the
following loss:
Pixel Loss. We enforce an ℓ1 loss between the generated
image and ground truth as Lpix = ∥Igt − I+RGB∥1.
Perceptual Loss. Pixel loss is sensitive to image misalign-
ment due to pose estimation errors, and we further use a
perceptual loss [8] to measure the differences between the
activations on different layers of the pre-trained VGG net-
work [16] of the generated image I+RGB and ground truth

image Igt,

Lvgg =
∑ 1

N j

∥∥gj (Igt)− gj
(
I+RGB

)∥∥
2
, (1)

where gj is the activation and N j the number of elements
of the j-th layer in the pretrained VGG network.
Adversarial Loss. We leverage a multi-scale discriminator
D [19] as an adversarial loss Ladv to enforce the realism of
rendering, especially for the cases where estimated human
poses are not well aligned with the ground truth images.
Face Identity Loss. We use a pre-trained network to ensure
that the renderers preserve the face identity on the cropped
face of the generated and ground truth image,

Lface = ∥Nface (Igt)−Nface

(
I+RGB

)
∥2, (2)

where Nface is the pretrained SphereFaceNet [12].
Velocity Loss. We employ a velocity loss (temporal motion
derivates) for the motion dececoding supervision,

Lvelocity = ∥V uv
gt(t+1) −Vuv

t+1∥2, (3)

where V uv
gt(t+1) is the ground truth velocity at timestep t+1,

and Vuv
t+1 is the predicted velocity by DM at timestep t+1.

Normal Loss. We also employ a surface normal loss (spa-
tial motion derivates) for the motion dececoding supervi-
sion,

Lnormal = ∥Nuv
gt(t) −Nuv

t ∥2, (4)

where Nuv
gt(t) is the ground truth normal at timestep t, and

Nuv
t is the predicted normal by DM at timestep t. Note that

in practical implementation, DM first predicts Nuv
t , which

is easier for the network than predicting Nuv
t+1 directly,

and Nuv
t+1 can be drived and normalized from: Nuv

t+1 =
∂Puv

t+1

∂x =
∂{Puv

t +Vuv
t+1}

∂x = Nuv
t +

∂Vuv
t+1

∂x . With the Vuv
t+1

predicted for temporal motion supervision, the prediction
of Nuv

t enforces a similar supervision with Nuv
t+1 for the

spatial motion learning.
Volume Rendering Loss. We supervise the training of vol-
ume rendering at low resolution, which is applied on the
first three channels of IF, Lvol = ∥IF[: 3] − IDgt∥2. IDgt is
the downsampled reference image.
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Figure 1. Illustration of Volumetric Triplane vs. Surface-based Triplane.

The networks were trained using the Adam optimizer
[9]. The loss weights {λpix, λvgg , λadv , λface, λvelocity,
λnormal, λvol } are set empirically to {.5, 10, 1, 5, 1, 1, 15}.
It takes about 12 hours to train a model from about 3000
images with 200 epochs on two NVIDIA V100 GPUs.

A.3. Training Data Processing.

We evaluate the novel view synthesis on three datasets:
ZJU-MoCap [14] (including sequences of S313, S315,
S377, S386, S387, S394) at resolution 1024× 1024, MPII-
RDDC [17] at resolution 1285 × 940, and AIST++ [10] at
1920 × 1080. Note that sequences of ZJU-MoCap used in
Neural Body are generally short, e.g., only 60 frames for
S313. Instead, to evaluate the time-varying effects, we ex-
tend the original training frames of S313, S315, S387, S394
to 400, 700, 600, 600 frames respectively depending on the
pose variance of each sequence, whereas S377 and S386 re-
main the same 300 frames as the setup of Neural Body [14].
4 cameras are used for training, and the others are used in
testing for ZJU-MoCap. 6 cameras are used in training, 3
for testing in AIST++, 18 cameras for training and 9 cam-
eras for testing in MPI-RDDC.

B. Additional Experimental Results

B.1. Comparisons with SOTA Methods

Comparisons with 3D pose- and image-driven ap-
proaches. In contrast to pose-driven methods (e.g., Neural
Body [14], Instant-NVR [3], HumanNeRF [20]), DVA [15]
and HVTR++ [6] propose to utilize both the pose and driv-
ing view features in rendering. They model both the pose
and texture features in UV space, whereas ours is distin-
guished by modeling motions in a surface-based triplane,
and we jointly learn physical motions and rendering in a
unified network for faithful rendering.

Tab. 1 summarizes the quantitative results for novel view
synthesis on the two sequences (S386 and S387) mentioned
in DVA, which suggest that our method significantly out-

Table 1. Quantitative comparisons against the 3D pose- and
image-driven approach DVA [15] and HVTR++ [6] on ZJU-
MoCap datasets (averaged on all test views and poses) for novel
view synthesis. To reduce the influence of the background, all
scores are calculated from images cropped to 2D bounding boxes
as used in [6]. Note that the training and test are conducted at the
image resolution of 1024 × 1024 by following the setup in DVA
[15]. For reference, we report the quantitative results of HVTR++
and DVA from the HVTR++ paper.

S386 LPIPS↓ FID↓ SSIM↑ PSNR↑
DVA [15] .146 117.80 .791 26.209

HVTR++ [6] .131 84.291 .797 26.517

Ours .108 72.556 .807 27.164

S387 LPIPS↓ FID↓ SSIM↑ PSNR↑
DVA [15] .166 142.67 .791 22.474

HVTR++ [6] .136 101.03 .786 22.515

Ours .112 76.097 .808 23.581

performs DVA and HVTRPP in terms of both per-pixel and
perception metrics. Qualitative comparisons are provided
in Fig. 2, which shows that our method produces sharper
reconstructions with faithful wrinkles than both DVA and
HVTR++. In contrast to the image resolution of 512 × 512
used in Neural Body [14], HumanNeRF [20] and Instant-
NVR [3], DVA and HVTR++ were trained and evaluated
at the resolution of 1024 × 1024 in [6, 15]. We follow the
same protocol used in [6, 15] for fair comparisons.
Comparisons with PoseVocap [11]. PoseVocap [11] pro-
poses joint-structured pose embeddings for better temporal
consistency in rendering. Qualitative comparisons on novel
view synthesis are shown in Fig. 3, which suggest that
our method is capable of generating higher-quality wrin-
kles than PoseVocap [11]. Note that PoseVocap only pro-
vides qualitative results on ZJU-MoCap, and the test results
of PoseVocap are reported in the paper [11].



Figure 2. Qualitative comparisons against the 3D pose- and image-driven approach DVA [15] and HVTR++ [6] for novel view synthesis
of training poses on ZJU-MoCap. For each example, from left to right: DVA, HVTR++, Ours, Ground Truth. Rendering results of DVA
and HVTR++ are provided by the authors.

Figure 3. Qualitative comparisons against PoseVocap [11] for
novel view synthesis of training poses on ZJU-MoCap.

Pose Generalization. Our method is focused on generat-
ing free-viewpoint video of dynamic humans, whereas we
evaluate the pose generalization capability on ZJU-MoCap
and it is observed that our method is not overfitted to the
training poses, as suggested in Fig. 4 and Tab. 2.

Compared to ARAH [18] (a forward-skinning-based ap-
proach), the state-of-the-art method in pose generalization
tasks, we generate better quantitative results in terms of
novel view synthesis on training poses or novel poses as
summarized in Tab. 2. The qualitative comparisons in Fig.
4 suggest that our method is capable of synthesizing higher-

Figure 4. Qualitative comparisons against ARAH [18] for novel
view synthesis of novel poses on ZJU-MoCap.

quality faces and cloth wrinkles than ARAH. Note that our
method is not targeted at animation, and since the pose vari-
ance of ZJU-MoCap is not big enough, the experiments do
not illustrate that our method achieves the SOTA results in
animation tasks. However, the experimental results suggest



Table 2. Quantitative comparisons against ARAH [18] for novel
view synthesis of training poses and novel poses on ZJU-MoCap
datasets (averaged on all test views and poses) for novel view syn-
thesis. To reduce the influence of the background, all scores are
calculated from images cropped to 2D bounding boxes.

S377-Train LPIPS↓ FID↓ SSIM↑ PSNR↑
ARAH [18] .096 83.900 .870 25.176

Ours .069 63.008 .866 25.306

S386-Train LPIPS↓ FID↓ SSIM↑ PSNR↑
ARAH [18] .112 99.614 .808 27.008

Ours .080 85.811 .801 27.069

S377-Novel LPIPS↓ FID↓ SSIM↑ PSNR↑
ARAH [18] .116 106.46 .821 23.355

Ours .088 78.961 .819 23.594

S386-Novel LPIPS↓ FID↓ SSIM↑ PSNR↑
ARAH [18] .150 114.24 .742 25.031
Ours .123 104.45 .728 24.821

Table 3. Quantitative comparisons on MPII-RDDC datasets [4].
To reduce the influence of the background, all scores are calculated
from images cropped to 2D bounding boxes.

Methods LPIPS↓ FID↓ SSIM↑ PSNR↑
HumanNeRF [20] .175 116.53 .615 17.443

Ours .153 107.79 .627 18.048

Table 4. Quantitative comparisons on S13 and S21 sequences from
AIST++ datasets [10]. To reduce the influence of the background,
all scores are calculated from images cropped to 2D bounding
boxes.

S13 LPIPS↓ FID↓ SSIM↑ PSNR↑
Neural Body [14] .266 276.70 .732 17.649
Ours .183 161.68 .751 17.488

S21 LPIPS↓ FID↓ SSIM↑ PSNR↑
Neural Body [14] .296 333.03 .731 17.137

Ours .205 177.36 .757 17.334

that our method is not completely overfitted to the training
poses. We use the publicly released test results of ARAH
for comparisons.

B.2. Quantitative Comparisons on MPII-RDDC
and AIST++ Datasets.

The quantitative comparisons on MPII-RDDC [4] are sum-
marized in Tab. 3, which suggests that our method out-

performs HumanNeRF in the lighting-conditioned scenario.
The quantitative comparisons on AIST++ [10] are summa-
rized in Tab. 4, which confirms the effectiveness of our
method in rendering fast motions.

B.3. Ablation study

Surface-based Triplane vs. Volumetric Triplane. We
compare the volumetric triplane (Vol-Trip) [1] and our pro-
posed surface-based triplane (Surf-Trip) for human model-
ing as shown in Fig. 1. It is observed that the volumetric
triplane is a sparse representation for human body model-
ing, i.e., only 21-35% features are utilized to render the hu-
man under the specific pose, and hence the Vol-Trip fails
to handle the self-occlusions effectively as shown in Fig.
1 (d), though Vol-Trip generates plausible results from an-
other viewpoint without sever self-occlusions. In contrast,
about 85% surface-based triplane features are utilized in
rendering. In addition, with surface-guided ray marching,
our method is more efficient by filtering out invalid points
that are far from the body surface.

Table 5. Ablation study of motion prediction and training views.

S313 LPIPS ↓ FID ↓ SSIM↑ PSNR↑
w/o Pred .085 73.674 .834 24.908
Predt .073 60.942 .848 25.537
Predt+1 .060 50.170 .869 26.654
Predt+1(1 view) .126 112.19 .788 22.830

S387 LPIPS ↓ FID ↓ SSIM↑ PSNR↑
w/o Pred .115 93.688 .761 22.152
Predt .096 83.825 .790 23.083
Predt+1 .084 71.216 .810 23.735
Predt+1(1 view) .151 128.18 .729 21.093

Motion Prediction. Predicting the next frame based on the
status of the current frame is a one-to-many mapping prob-
lem. However, we take as input additional dynamics, and
trajectory features to infer the motion of the next frame,
which alleviates the one-to-many mapping issue. The paper
is not focused on motion prediction/generation. Instead, we
use the motion prediction to force a meaningful embedding
of the feature space, which improves the rendering quality.
Predicting the next motion frame Predt+1 offers higher-
quality rendering than predicting the current motion frame
Predt, i.e. Vuv

t+1 vs. Vuv
t , as listed in Tab. 5. We con-

duct experiments on the S313 and S387 sequences of the
ZJU-MoCap dataset in Tab. 5.
Training Views. Tab. 5 suggests that the performances of
novel view synthesis degrade with fewer training views, i.e.,
from 4 training views Predt+1 to 1 view Predt+1(1 view).
Even with 1 view, our performance is still comparable with
Instant-NVR (Tab. 8).



Table 6. Ablation study of dynamics conditioning.

Methods LPIPS↓ FID↓ SSIM↑ PSNR↑
Norm. + Velo. [21] .093 81.900 .825 24.113

Ours w/ Dcond .085 73.674 .834 24.908

Ours w/ Vpred, Npred .060 50.170 .869 26.654

Table 7. Ablation study of super-resolution module under different
image resolutions and upsampling factors.

Methods LPIPS↓ FID↓ SSIM↑ PSNR↑
5122, ×2 .060 49.714 .870 26.678

5122, ×4 .070 56.456 .854 26.166

10242, ×2 .076 54.563 .862 26.063

Dynamics Conditioning. We compare the methods of con-
ditioning dynamics in the rendering network between [21]
and ours. [21] takes as input the velocities of the past 10
consecutive poses and normal maps of the current pose,
whereas we take as input the positional map of the current
pose and aggregated trajectory of the past 5 frames as input.
Tab. 6 suggests that our method enables better quantitative
results, and we improve the performances by further learn-
ing motions, e.g., surface velocity and normal prediction.
Super-resolution. Our method utilizes a super-resolution
module to synthesize high-quality images. The quantitative
results are summarized in Tab. 7. It is observed that the
performances are improved when the upsampling factor is
increased from 4 to 2, which indicates more geometric fea-
tures are utilized by increasing the resolution of volumetric
rendering.

B.4. Efficiency

At test time, our method runs at 3.2 FPS on one NVIDIA
V100 GPU to render 512×512 resolution images, about
39× faster than Neural Body [14], 17× faster than Human-
NeRF [20], and 9× faster than Instant-NVR [3].

B.5. Failure Cases

Our method fails to generate high-quality wrinkles for com-
plicated textures of AIST++ [10], as shown in Fig. 5. This
is because we cannot learn to infer dynamic wrinkles from
the complicated appearances.
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