
A. Acknowledgements
We thank Tanmaya Dabral, Jialin Wu, Radu Soricut, Aditya Avinash, Howard Zhou, Jiao Sun, Deqing Fu, Cyrus Rashtchian,
Andrew Tomkins, Tom Duerig, as well as the Agile Modeling team for helpful project discussions and technical support in this
project.

B. Examples outputs of our data-synthesis pipeline
We first present step-by-step examples of our data-synthesis pipeline. As discussed in §3, the pipeline contains four steps:
program generation, program execution, program filtering, and converting execution traces into chains-of-thoughts. Here we
show three filtered examples from three datasets we use. As shown, LLMs like PaLM-2 [3] are able to generate complex
programs to solve compositional vision tasks. The synthesized CoTs are used to fine-tune our VLMs.

Is the bookshelf to the right or to the left of the chair that is to the left of the vase?

Execution Trace

Conversion to COT

The vase is at 676 615 756 653. To its left, the chair is at 603 467 771 549. The
bookshelf is at 505 244 714 359. Therefore, the bookshelf is to the left of the
chair.

(a)

PaLM-2 Generated Program

How many cars have the brake lights on?

PaLM-2 Generated Program

Execution Trace

Conversion to COT

The cars at 669 103 779 286 and 669 468 769 664 have the brake lights on. Thus,
there are 2 cars with the brake lights on.

(b)

What is usually found in the same room as the word on the sign spelled backwards?

Execution Trace

Conversion to COT

The word on the sign is “stop”. “Stop” spelled backwards is “pots”. Pans are
usually found in the same room as pots.

(c)

PaLM-2 Generated Program

Figure 6. Examples of our data-synthesis pipeline. (a) is from GQA [26]; (b) is from TallyQA [1]; (c) is from A-OKVQA [52].

C. Experimental details

C.1. Model architecture details

For both PaLI models that we considered in our experiments, the architectures are similar: images are encoded into visual
tokens individually via a visual encoder. Then, the vision tokens along with the textual inputs are passed through an encoder-
decoder UL2 Transformer [58]. The PaLI models were then pre-trained with image-text pairs to perform multimodal tasks.
Specifically, PaLI-3 [11] uses a pre-trained 2B SigLIP [77] as visual encoder, and a 3B UL2. The image resolution is 812⇥812.
PaLI-X [10] uses a pre-trained VIT-22B [15] as visual encoder, and a 32B UL2. The image resolution is 756⇥ 756. Please
refer to the PaLI-3 [11] and PaLI-X [10] papers about more architecture details.

C.2. Datasets

The details of the data mixture of academic task-oriented VQA datasets used in VPD training are shown in Table 4. We only
use a subset of each dataset’s training set. # labels refers to the total number of examples (containing image, query, and answer)
we use. # CoTs refers to the number of examples that we have synthesized CoTs using our programs. In total, there are 89.6K
CoTs used during training.

Dataset Description # labels # COTs

VQAv2 [19] General 100.0K
OCR-VQA [48] OCR 50.0K
GQA [26] Compositional 86.0K 38.0K
OK-VQA [45] Knowledge 9.0K 6.7K
A-OKVQA [52] Knowledge 17.1K 11.2K
TallyQA [1] Counting 48.4K 33.7K

Total 310.5K 89.6K

Table 4. Data mixture of academic task-oriented VQA datasets used in VPD training.

Details of each evaluation benchmark we use are in Table 5. For free-form question answering, we run inference with the
prompt “Answer with a single word or phrase.”, using greedy decoding without any constraint on the model’s output space.
For multiple-choice questions, we run inference with the prompt “Answer with the option letter from the given choices directly.”
and generate the option letter.

Dataset Description # split # Metrics

VQAv2 [19] General VQA. General questions about entities, colors, materials, etc. test-dev VQA Score

GQA [26] Compositional VQA. Built on the scene-graphs in Visual Genome [32].
More compositional questions and spatial relation questions. test-dev EM

OK-VQA [45] Knowledge-based VQA. Questions that need external knowledge to be answered. val VQA Score
A-OKVQA [52] An advanced version of OK-VQA that is more challenging.

– Multiple Choice (MC): choose 1 of the 4 options. val, test EM
– Direct Answer (DA): compare with 10 free-form human answers val, test VQA Score

TallyQA [1] Counting questions.
– Simple: synthesized simple counting questions test-simple EM
– Complex: human-written complex counting questions test-complex EM

TextVQA [55] VQA on images that contain text val VQA Score

POPE [36] Benchmark on VLM hallucination.
Binary questions of whether an object exists in the image. dev EM

MMBench [40]
Comprehensive benchmark on VLMs with multiple-choice questions.
Covering 20 ability dimensions across 3 levels (e.g., coarse perception, fine-grained
perception, attribute reasoning, relation reasoning, logic reasoning, etc.)

dev EM

Table 5. Summary of evaluation benchmarks.

C.3. Training details
We use LoRA [22] to fine-tune both PaLI-3 [11] and PaLI-X [10]. For generalist training, we add LoRA weights on each linear
layer in the attention blocks and multilayer perceptron (MLP) blocks for both the encoder and decoder in the UL2 transformer.
For both models, we use rank = 8. We use a cosine learning rate schedule, with warm-up ratio 1% and peak learning rate
1e� 4. For all models and all settings, we use a batch size of 128 and fine-tune the pre-trained model for 8, 000 steps. In terms
of training time, we train PaLI-X-VPD with 128 TPU-v3 [27] and it takes about 2 days to finish training. For PaLI-3-VPD,
we use 32 TPU-v4 and training takes about 20 hours. We still observe a steady loss drop when we terminate training, which
indicates that more computation may lead to even better performance. For per-task fine-tuning, to avoid overfitting, we reduce
the number of training parameters. For both models, we only add LoRA weights to encoder layers. We use LoRA rank = 4
for PaLI-X-VPD and rank = 8 for PaLI-3-VPD. The peak learning rate is 1e� 4 and we use a cosine learning schedule,
with warm-up ratio 1%. For all per-task fine-tuning experiments, we use a batch size of 64. We train for 1 epoch on GQA,
and 3 epochs on all other datasets. We use the AdamW [30] optimizer with �1 = 0.9 and �2 = 0.98, and bfloat16 for all
experiments.

C.4. Inference costs
We sampled 300 questions and measured the computation cost. Using 128 TPU v5, the code generation on average takes 4.7s,
and program execution takes 4.2s. With the same resource, PaLI-X-VPD takes 0.8s per question. The cost gap (0.8s vs 8.9s)
is also large with immense consequences for practical applications.

D. Human evaluation
We asked our human annotators to first evaluate each model’s answer, using the criteria described in §4.3. After rating each
model answer separately, we also asked them to choose a preferred answer between the two. However, we observed that there
are cases where one or both models have similar answers, or both answers are incorrect, in which case it would be difficult for
the annotators to choose a favorite, so we also provided the annotators with the options “Both” or “Neither”, giving them the
following instruction: “Please try to choose "Answer 1 is better" or "Answer 2 is better" whenever possible. We also give you
the option to choose "Both are equally good." or "Both are too bad to make a choice." for the cases when it is hard to make a
choice either because both answers are correct and similar, or because both answers are wrong so it makes no sense to choose
a favorite.”

We show some examples from our human evaluation in Table 6. The table contains the images and corresponding
text queries (column 2), the answers provided by the two models we compared—PaLI-X Instruct (column 3) and
PaLI-X-VPD (column 4)—along with the corresponding annotations given by the human annotators. The human annotations
are aggregated across 3 raters per sample. Finally, column 5 shows which of the two answers was preferred by the human
raters. When a model’s answer includes a bounding box, we annotate it on the image for convenience. Examples are as follow:

• Example #1 shows a common situation where PaLI-X-VPD succeeds where PaLI-X Instruct fails. By being
trained with programs that include calls to an object detection tool, PaLI-X-VPD has learned to produce answers that
localize the object in question in the image, which prods the model to correctly perform tasks such as counting.

• Example #2 shows a type of question where neither model produces an explanation, where one is arguably not necessary.
However, in spite the lack of explanation, PaLI-X-VPD’s answer is more accurate.

• Example #3 shows an example where from Tally QA where PaLI-X-VPD is able to correctly localize and count the
number of tennis balls in the image, as asked by the question, when PaLI-X Instruct counts incorrectly and also
does not provide a rationale.

• Example #4 shows a situation where PaLI-X-VPD produces an answer that is deemed both factual and consistent by
the human raters, and yet the answer is incorrect. Indeed we can notice that everything that PaLI-X-VPD is accurate
with respect to the context image, and yet it does not address the question as expected by the human raters.

• Example #5 shows a case where both models are incorrect, but the annotators prefer PaLI-X-VPD’s answer, despite
the fact that both models essentially give the same incorrect final count of 0 yellow busses. However, PaLI-X-VPD
provides a consistent rationale, from which we can tell the reason for its mistake: it correctly identifies 2 out of the 3
buses in the image, missing the partially occluded yellow bus in the back. It seems the annotators prefer this kind of
mistake over one without an explanation.

Index Image & Query PaLI-Instruct Answer
& Human Eval

PaLI-VPD Answer
& Human Eval

Annotator
Preference

1.

On which side is the knife?

The knife is on the left side of the
table.

• Correct: 7
• Has Explanation: 7
• Explanation Factuality: N/A
• Explanation Consistency: N/A

The knife is at 55 693 412 884,
which is on the right side of the
image.

• Correct: 3
• Has Explanation: 3
• Explanation Factuality: 3
• Explanation Consistency: 3

PaLI-VPD

2.

What are this fruits called?

The fruits in the image are apples
and broccoli.

• Correct: 7
• Has Explanation: 7
• Explanation Factuality: N/A
• Explanation Consistency: N/A

The fruits are called apples.

• Correct: 3
• Has Explanation: 7
• Explanation Factuality: N/A
• Explanation Consistency: N/A

PaLI-VPD

3.

How many tennis balls are in the
photo?

There are two tennis balls in the
photo.

• Correct: 7
• Has Explanation: 7
• Explanation Factuality: N/A
• Explanation Consistency: N/A

There is a tennis ball at 826 665 869
721. Thus, there is 1 tennis ball.

• Correct: 3
• Has Explanation: 3
• Explanation Factuality: 3
• Explanation Consistency: 3

PaLI-VPD

4.

Why is one player wearing gloves?

The player is wearing gloves
because he is a batter. Batters wear
gloves to protect their hands from
the ball.

• Correct: 3
• Has Explanation: 7
• Explanation Factuality: 3
• Explanation Consistency: 3

The player is wearing gloves to
catch the ball.

• Correct: 7
• Has Explanation: 3
• Explanation Factuality: 3
• Explanation Consistency: 3

PaLI-
Instruct

5.

How many yellow buses are in the pic-
ture?

There are no yellow buses in the
picture.

• Correct: 7
• Has Explanation: 7
• Explanation Factuality: N/A
• Explanation Consistency: N/A

There are 2 buses in the picture.
Neither of them is yellow. Thus,
there are 0 yellow buses in the
picture.

• Correct: 7
• Has Explanation: 3
• Explanation Factuality: 7
• Explanation Consistency: 3

PaLI-VPD

Table 6. Human Annotation Examples. We show the answers provided by the two models, PaLI-X Instruct and PaLI-X-VPD, along
with the aggregated evaluation scores by human raters along the criteria introduced in §4.3.

E. Comparison with visual programs

Figure 7. Accuracy of visual programs and PaLI-X-VPD on validation sets.

In Figure 7 also do a side-by-side comparison of the accuracy of visual programs and that of PaLI-X VPD on GQA,
OK-VQA, A-OKVQA (multiple choice), and TallyQA (simple and complex combined). We report results on the validation
sets, so PaLI-X VPD was not distilled with these exact visual programs, but with visual programs generated in a similar
manner on the training set. The results indicate that PaLI-X VPD has much higher accuracy than visual programs on all
tasks. This raises an interesting question: why is the student model more accurate than its teacher? One explanation is that
our pipeline allows us to leverage labeled data to improve the quality of the visual programs. When ground truth labels are
available, we can choose a correct program among 5 candidates, rather than only relying on a single candidate. As supported
by the results in Figure 5, this greatly improves the accuracy of our visual programs as teachers, thus making them more
helpful for distilling our VLMs.

F. Qualitative Examples on Content Moderation
We present qualitative examples of our methods on the Hateful Memes [29] datasets in Figure 8. We include three
unsupervised/zero-shot methods and our state-of-the-art supervised model in this comparison.

Programs is much more accurate than zero-shot PaLI-X-VPD. As exemplified in (a), (c), and (d), despite that our
PaLI-X-VPD outperforms all prior zero-shot methods on Hateful Memes, it is still much less accurate than our programs,
and is relatively insensitive to hateful content detection.

VPD teaches the generalist VLM to reason like programs on this task, even when no labels are available. As shown in
(a) and (b), our PaLI-X-VPD (specialist with zero-shot CoT) is able to reason like the program, and is much more accurate
on hateful content detection compared with the generalist model.

Supervised learning further improves the performance of our VPD models. The quantitative results in Table 3 show
that the accuracy and AUC-ROC of PaLI-X-VPD (supervised specialist) is much higher than that of the visual programs
after training with supervised labels. As shown in (c), PaLI-X-VPD (supervised specialist) is able to capture the nuances
expressed by the meme.

Failure case of VLMs. We still observe some failure cases such as the one in example (d), where even our supervised model
fails while the program succeeds on hateful content detection.

PaLI-X-VPD (generalist):

No, this is not a hateful meme. The meme is simply a joke
about the fact that black people are consistently treated worse
than white people.

Program:

This meme is hateful because it stereotypes an entire group of
people as being criminals. It is also harmful because it
suggests that people who are treated poorly by society
deserve it because they are criminals.

PaLI-X-VPD (specialist w/ zero-shot CoTs):

The meme is hateful because it suggests that black people are
consistently sources of crime. This is a harmful stereotype that
can lead to discrimination and violence against black people.

PaLI-X-VPD (supervised specialist):

This meme is hateful because it stereotypes black people as
criminals. It suggests that black people are not worthy of being
treated well because they are criminals. This is a harmful
stereotype that can lead to discrimination against black people.

PaLI-X-VPD (generalist):

No, this is not a hateful meme. The meme is about thinking
before you act, which is a positive message.

Program:

The meme is not hateful because it is not targeting a specific
group of people. It is simply giving advice on how to be treated
better.

PaLI-X-VPD (specialist w/ zero-shot CoTs):

The meme is not hateful. It is a positive message about
thinking before you act.

PaLI-X-VPD (supervised specialist):

This meme is not hateful because it is not targeting a specific
group of people. It is simply suggesting that people should
think before they act.

PaLI-X-VPD (generalist):

No, this is not a hateful meme. The meme is about a woman
who is in a wheelchair and her husband is always pushing her
around and talking behind her back.

Program:

This meme is about a husband pushing his wife around in a
wheelchair. The meme is not hateful because it is not making
fun of the wife or the husband.

PaLI-X-VPD (specialist w/ zero-shot CoTs):

The meme is not hateful because it is not targeting a specific
group of people. It is simply making a joke about a couple's
relationship.

PaLI-X-VPD (supervised specialist):

This meme is hateful because it is making fun of a woman who
is in a wheelchair. It is also making light of domestic violence.

PaLI-X-VPD (generalist):

No, this is not a hateful meme. It is a funny meme about
Thanksgiving in China.

Program:

This is a hateful meme because it is making a joke about the
stereotype that Chinese people eat cats. This stereotype is
harmful because it dehumanizes Chinese people and makes
them seem like they are barbaric and uncivilized.

PaLI-X-VPD (specialist w/ zero-shot CoTs):

The meme is not hateful because it does not contain any
hateful language or imagery.

PaLI-X-VPD (supervised specialist):

The meme is not hateful because it is not making fun of any
particular group of people. It is simply a joke about the fact that
Thanksgiving is not celebrated in China.

(a) (b)

(c) (d)

Figure 8. Example outputs of different methods on Hateful Memes [29] dev set. The unsupervised methods include zero-shot PaLI-X-VPD
(generalist), our generated program, PaLI-X-VPD (specialist with zero-shot CoTs). We also include our supervised method, i.e.,
PaLI-X-VPD (specialist). We also mark whether their outputs matches the gold answer.

G. Prompts
In this section we present the prompts used in our data synthesis pipeline. Refer to §B for step-by-step examples of the
programs, execution traces, and the converted CoTs.

G.1. Prompt for code generation
For each image and query, we put the query and a model-generated image caption in the prompt. An LLM takes this prompt
and generate the program to answer the query. We modify the original ViperGPT [16] prompt to adapt to the vision tools we
use in this paper.

1 class ImagePatch:
2 # A Python class containing a crop of an image centered around a particular object , as well as relevant information .
3 # Attributes
4 # ����������
5 # cropped_image : array_like
6 # An array�like of the cropped image taken from the original image.
7 # left , lower, right , upper : int
8 # An int describing the position of the (left /lower/ right /upper) border of the crop’s bounding box in the original image.
9 # Methods

10 # �������
11 # find (object_name: str)�>List[ImagePatch]
12 # Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
13 # image matching the object_name.
14 # visual_question_answering (question : str =None)�>str
15 # Returns the answer to a basic question asked about the image. If no question is provided , returns the answer to "What is this ?".
16 # image_caption()�>str
17 # Returns a short description of the image crop .
18 # expand_patch_with_surrounding()�>ImagePatch
19 # Returns a new ImagePatch object that contains the current ImagePatch and its surroundings .
20 # overlaps (patch : ImagePatch)�>Bool
21 # Returns True if the current ImagePatch overlaps with another patch and False otherwise
22 # compute_depth()�>float
23 # Returns the median depth of the image patch . The bigger the depth , the further the patch is from the camera.
24
25 def __init__ (self , image, left : int = None, lower: int = None, right : int = None, upper: int = None):
26 # Initializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as
27 # attributes . If no coordinates are provided , the image is left unmodified, and the coordinates are set to the
28 # dimensions of the image.
29 # Parameters
30 # �������
31 # image: PIL.Image
32 # An array�like of the original image.
33 # left , lower, right , upper : int
34 # An int describing the position of the (left /lower/ right /upper) border of the crop’s bounding box in the original image.
35 # The coordinates (y1,x1,y2,x2) are with respect to the upper left corner the original image.
36 # To be closer with human perception, left , lower, right , upper are with respect to the lower left corner of the squared image.
37 # Use left , lower, right , upper for downstream tasks .
38
39 self . original_image = image
40 size_x , size_y = image. size
41
42 if left is None and right is None and upper is None and lower is None:
43 self .x1 = 0
44 self .y1 = 0
45 self .x2 = 999
46 self .y2 = 999
47 else :
48 self .x1 = left
49 self .y1 = 999 � upper
50 self .x2 = right
51 self .y2 = 999 � lower
52
53 self .cropped_image = image.crop((int (self .x1/1000⇤self. sz) , int (self .y1/1000⇤self. sz) ,
54 int (self .x2/1000⇤self. sz) , int (self .y2/1000⇤self. sz)))
55
56 self .width = self .x2 � self.x1
57 self . height = self .y2 � self.y1
58
59 # all coordinates use the upper left corner as the origin (0,0) .
60 # However, human perception uses the lower left corner as the origin .
61 # So, need to revert upper/lower for language model
62 self . left = self .x1
63 self . right = self .x2
64 self .upper = 999 � self.y1
65 self . lower = 999 � self.y2
66
67 self . horizontal_center = (self . left + self . right) / 2
68 self . vertical_center = (self . lower + self .upper) / 2
69
70 self . patch_description_string = f"{ self .y1} { self .x1} { self .y2} { self .x2}"
71
72 def __str__ (self) :
73 return self . patch_description_string
74
75 def compute_depth(self) :
76 # compute the depth map on the full image. Returns a np. array with size 192⇤192
77 # Parameters
78 # ����������
79 # Returns
80 # �������
81 # float
82 # the median depth of the image crop
83
84 # Examples
85 # ��������
86 # >>> return the image patch of the bar furthest away
87 # >>> def execute_command(image)�>ImagePatch:
88 # >>> image_patch = ImagePatch(image)
89 # >>> bar_patches = image_patch. find ("bar")

90 # >>> bar_patches . sort (key=lambda bar: bar .compute_depth())
91 # >>> return bar_patches[�1]
92
93 return depth(self .cropped_image)
94
95 def find (self , object_name: str) :
96 # Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
97 # The object_name should be as simple as example, including only nouns
98 # Otherwise, returns an empty list .
99 # Note that the returned patches are not ordered

100 # Parameters
101 # ����������
102 # object_name : str
103 # the name of the object to be found
104
105 # Returns
106 # �������
107 # List [ImagePatch]
108 # a list of ImagePatch objects matching object_name contained in the crop
109
110 # Examples
111 # ��������
112 # >>> # find all the kids in the images
113 # >>> def execute_command(image) �> List[ImagePatch]:
114 # >>> image_patch = ImagePatch(image)
115 # >>> kid_patches = image_patch. find ("kid")
116 # >>> return kid_patches
117
118 print (f"Calling find function . Detect {object_name}.")
119 det_patches = detect (self .cropped_image, object_name)
120 print (f"Detection result : {’ and ’. join ([str (d) + ’ ’ + object_name for d in det_patches])}")
121
122 return det_patches
123
124
125 def expand_patch_with_surrounding(self) :
126 # Expand the image patch to include the surroundings . Now done by keeping the center of the patch
127 # and returns a patch with double width and height
128
129 # Examples
130 # �������
131 # >>> # How many kids are not sitting under an umbrella?
132 # >>> def execute_command(image):
133 # >>> image_patch = ImagePatch(image)
134 # >>> kid_patches = image_patch. find ("kid")
135
136 # >>> # Find the kids that are under the umbrella .
137 # >>> kids_not_under_umbrella = []
138
139 # >>> for kid_patch in kid_patches :
140 # >>> kid_with_surrounding = kid_patch .expand_patch_with_surrounding()
141 # >>> if "yes" in kid_with_surrounding . visual_question_answering (" Is the kid under the umbrella?") :
142 # >>> print (f"the kid at {kid_patch} is sitting under an umbrella .")
143 # >>> else :
144 # >>> print (f"the kid at {kid_patch} is not sitting under an umbrella .")
145 # >>> kids_not_under_umbrella .append(kid_patch)
146
147 # >>> # Count the number of kids under the umbrella .
148 # >>> num_kids_not_under_umbrella = len(kids_not_under_umbrella)
149
150 # >>> return formatting_answer(str (num_kids_not_under_umbrella))
151
152 new_left = max(self . left � self.width / 2, 0)
153 new_right = min(self . right + self .width / 2, 999)
154 new_lower = max(self . lower � self. height / 2,0)
155 new_upper = min(self .upper + self . height / 2, 999)
156
157 return ImagePatch(self . original_image , new_left , new_lower, new_right , new_upper)
158
159
160 def visual_question_answering (self , question : str = None) �> str:
161 # Returns the answer to a basic question asked about the image.
162 # The questions are about basic perception , and are not meant to be used for complex reasoning
163 # or external knowledge.
164
165 # Parameters
166 # �������
167 # question : str
168 # A string describing the question to be asked.
169
170 # Examples
171 # �������
172
173 # >>> # What is the name of the player in this picture ?
174 # >>> def execute_command(image) �> str:
175 # >>> image_patch = ImagePatch(image)
176 # >>> return formatting_answer(image_patch. visual_question_answering ("What is the name of the player ?"))
177
178 # >>> # What color is the foo?
179 # >>> def execute_command(image) �> str:
180 # >>> image_patch = ImagePatch(image)
181 # >>> return formatting_answer(foo_patch . visual_question_answering ("What color is the foo?"))
182
183 # >>> # What country serves this kind of food the most?
184 # >>> def execute_command(image) �> str:
185 # >>> image_patch = ImagePatch(image)
186 # >>> food_name = image_patch.visual_question_answering ("What kind of food is served ?")
187 # >>> country = language_question_answering(f"What country serves {food_name} most?", long_answer=False)
188 # >>> return formatting_answer(country)
189
190 # >>> # Is the second bar from the left quuxy?
191 # >>> def execute_command(image) �> str:
192 # >>> image_patch = ImagePatch(image)
193 # >>> bar_patches = image_patch. find ("bar")
194 # >>> bar_patches . sort (key=lambda x: x. horizontal_center)
195 # >>> bar_patch = bar_patches [1]
196 # >>> return formatting_answer(bar_patch . visual_question_answering (" Is the bar quuxy?"))

197
198 answer = vqa(self .cropped_image, question)
199
200 print (f"Calling visual_question_answering function . ")
201 print (f"Question: {question}")
202 print (f"Answer: {answer}")
203
204 return answer
205
206 def image_caption(self) �> str:
207 # Returns a short description of the image.
208 return image_caption(self .cropped_image)
209
210 def overlaps (self , patch) �> bool:
211 # check if another image patch overlaps with this image patch
212 # if patch overlaps with current patch , return True. Otherwise return False
213
214 if patch . right < self . left or self . right < patch . left :
215 return False
216 if patch . lower > self .upper or self . lower > patch .upper:
217 return False
218 return True
219
220
221 def language_question_answering(question : str , long_answer: bool = False) �> str:
222 # Answers a text question using a lanugage model like PaLM and GPT�3. The input question is always a formatted string with a variable in it .
223 # Default is short�form answers, can be made long�form responses with the long_answer flag .
224
225 # Parameters
226 # ����������
227 # question : str
228 # the text question to ask . Language model cannot anderstand the image. Must not contain any reference to ’ the image’ or ’ the photo ’, etc .
229 # long_answer: bool
230 # whether to return a short answer or a long answer. Short answers are one or at most two words, very concise .
231 # Long answers are longer , and may be paragraphs and explanations . Defalt is False .
232
233 # Examples
234 # ��������
235 # >>> # What is the city this building is in?
236 # >>> def execute_command(image) �> str:
237 # >>> image_patch = ImagePatch(image)
238 # >>> building_name = building_patch . visual_question_answering ("What is the name of the building ?")
239 # >>> return formatting_answer(language_question_answering(f"What city is {building_name} in ?", long_answer=False))
240
241 # >>> # Who invented this object ?
242 # >>> def execute_command(image) �> str:
243 # >>> image_patch = ImagePatch(image)
244 # >>> object_name = object_patch . visual_question_answering ("What is this object ?")
245 # >>> return formatting_answer(language_question_answering(f"Who invented {object_name}?", long_answer=False))
246
247 # >>> # Explain the history behind this object .
248 # >>> def execute_command(image) �> str:
249 # >>> image_patch = ImagePatch(image)
250 # >>> object_name = object_patch . visual_question_answering ("What is the object ?")
251 # >>> return formatting_answer (. language_question_answering(f"What is the history behind {object_name}?", long_answer=True))
252 print (f"Calling language_question_answering")
253 print (f"Question: {question}")
254
255 answer = language_model_qa(question, long_answer).lower () . strip ()
256 print (f"Answer: {answer}")
257 return answer
258
259
260 def distance (patch_a: Union[ImagePatch, float], patch_b: Union[ImagePatch, float]) �> float:
261 # Returns the distance between the edges of two ImagePatches, or between two floats .
262 # If the patches overlap , it returns a negative distance corresponding to the negative intersection over union.
263
264 # Parameters
265 # ����������
266 # patch_a : ImagePatch
267 # patch_b : ImagePatch
268
269 # Examples
270 # ��������
271 # # Return the qux that is closest to the foo
272 # >>> def execute_command(image):
273 # >>> image_patch = ImagePatch(image)
274 # >>> qux_patches = image_patch. find (’qux’)
275 # >>> foo_patches = image_patch. find (’ foo ’)
276 # >>> foo_patch = foo_patches [0]
277 # >>> qux_patches. sort (key=lambda x: distance (x, foo_patch))
278 # >>> return qux_patches[0]
279
280 return dist (patch_a , patch_b)
281
282
283 def formatting_answer(answer) �> str:
284 # Formatting the answer into a string that follows the task ’s requirement
285 # For example, it changes bool value to "yes" or "no", and clean up long answer into short ones.
286 # This function should be used at the end of each program
287
288 final_answer = ""
289 if isinstance (answer, str) :
290 final_answer = answer. strip ()
291
292 elif isinstance (answer, bool) :
293 final_answer = "yes" if answer else "no"
294
295 elif isinstance (answer, list) :
296 final_answer = " , " . join ([str (x) for x in answer])
297
298 elif isinstance (answer, ImagePatch):
299 final_answer = answer.image_caption()
300
301 else :
302 final_answer = str (answer)
303

304 print (f"Program output : { final_answer }")
305 return final_answer
306
307
308 Given an image and a query, write the function execute_command using Python and the ImagePatch class (above) , and the other functions above that could be executed to provide an answer to the query.
309 For reference , a model generated image description is also provided , so that the function can be customized for the given image. The image description is model�generated and may not be reliable , so do not trust it .
310
311 Consider the following guidelines :
312 � Use base Python (comparison, sorting) for basic logical operations , left / right /up/down, math, etc .
313 � Use the language_question_answering function to access external information and answer informational questions NOT concerning the image.
314 � The program should print out the intermediate traces as it runs . So add print function in the program if needed.
315
316 For usual cases , follow the guidelines below:
317 � For simple visual queries , directly call visual_question_answering to get the answer.
318 � For queries that need world knowledge, commonsense knowledge, and language reasoning , use visual_question_answering , language_question_answering , and sometimes image_caption to get the answer.
319 � For queries that require counting and spatical relations , in addition to the above functions , use find function to help getting the answer.
320 � For queries involve "behind" and " front " , consider using compute_depth function .
321
322
323 Some examples:
324 Image description : a woman is walking several dogs
325 Query: how many dogs are to left of the person?
326 Function:
327 def execute_command(image):
328 image_patch = ImagePatch(image)
329 person_patch = image_patch. find ("person") [0]
330 dog_patches = image_patch. find ("dog")
331
332 # Count the number of dogs whose leftmost x�coordinate is less than the person .
333 num_dogs_left = 0
334 for dog_patch in dog_patches:
335 if dog_patch. left < person_patch . horizontal_center :
336 print (f"dog at {dog_patch} is on the left of human.")
337 num_dogs_left += 1
338
339 return formatting_answer(num_dogs_left)
340
341 # [other in�context examples]
342
343 Image description : INSERT_IMAGE_CAPTION_HERE
344 Query: INSERT_QUERY_HERE
345 Function:

G.2. Prompt for result verification
After running each program, we get an output. As discussed in §3.1, we adopt the method of [28] and use an LLM to determine
if the program output matches human answers. The LLM takes the program output and reference answers as input. The
prompt is as follows:

1 Given a visual question , several human annotator answers, and a candidate answer, determine if the candidate is correct .
2 The candidate is considered correct if is allowed to have formatting differences compared with the human answers.
3 If the candidate is correct , return the gold answer it matches. Otherwise, return None.
4
5 Question: INSERT_QUESTION_HERE
6 Answers: INSERT_ANSWERS_HERE
7 Candidate: INSERT_CANDIDATE_HERE
8 Is the candidate correct ?

G.3. Prompt for CoT conversion
Finally, once a program is filtered, we convert its execution trace into chain-of-thought using an LLM. The LLM takes the
query, program, execution trace, program output as input, and summarizes the execution trace into a chain-of-thought rationale.
The prompt we use as as follows:

1 Given an image and a question , I wrote the function execute_command using Python and the ImagePatch class (above) , and the other functions above that could be executed to provide an answer to the query.
2 As shown in the code, the code will print execution traces .
3 I need you to rewrite the execution trace into a natural language rationale that leads to the answer.
4
5 Consider the following guidelines :
6 � Use the bounding box information in the rationale .
7 � Referencing the execution trace , write a reasoning chain that leads to the most common human answer. Notice that the output should be the same as the human answer, not necessarily the program output .
8
9

10 Some examples:
11 Question: How many wheels does the plane have?
12 Program:
13 def execute_command(image):
14 image_patch = ImagePatch(image)
15
16 # Find the plane in the image
17 plane_patch = image_patch. find ("plane") [0]
18
19 # Count the number of wheels on the plane
20 num_wheels = 0
21 for wheel in plane_patch . find ("wheel") :
22 num_wheels += 1
23
24 return formatting_answer(str (num_wheels))
25 Execution trace :
26 Calling find function . Detect plane
27 Detected plane at 153 25 647 972
28 Calling find function . Detect wheel
29 Detected wheel at 603 471 649 515
30 Detected wheel at 621 85 646 113
31 Detected wheel at 615 383 645 428
32 Program output : 3

33 Rationale : The plane at 153 25 647 972 has wheels at 603 471 649 515, 621 85 646 113, and 615 383 645 428.Thus, it has 3 wheels.
34
35 [Other demonstration examples]
36
37 Question: INSERT_QUESTION_HERE
38 INSERT_PROGRAM_HERE
39 Execution trace :
40 INSERT_EXECUTION_TRACE_HERE
41 Rationale :

H. Limitations and future directions
Among directions for improvement, we have noticed that the stronger the programs are, the bigger the gain that VPD brings.
We find that there are some problems that our visual program framework (ViperGPT [16]) cannot solve. Example failures are
in Appendix B. We list the limitations below, along with future work that may address these challenges.

Adding fine-grained and dense labeling tools. We find that programs tend to fail when there are multiple overlapping
bounding boxes. For example, when there is one person standing behind another, their bounding boxes overlap. This makes
programs fail to accurately determine what the person behind is wearing, since the bounding box will be dominated by the
person in the front. Adding dense-labeling tools like Segment Anything [31] can address this challenge. For example, recently
LISA [33] have proposed combining segmentation with LLMs. Future work can make dense labeling tools available in VPD
in a similar way, which will further boost VLM performance.

Agents, rather than static programs. There exist complex visual-language tasks that cannot be easily solved with one
program. However, recent work [67, 73] have explored the idea of LLM reinforcement learning agents, where LLMs interact
with an environment and do planning interactively. We may be able to leverage this idea in our scenario, and have an LLM
update the generated code given the new information gathered from vision tools.

Better ways to filter multimodal chain-of-thought data. As shown in §5, VPD can be effective even when there are no
labels to filter the programs. Future work may discover more efficient ways to filter multimodal CoT data, and apply VPD on
large-scale image datasets to produce large amount of complex instruction-tuning data for VLMs.

	. Introduction
	. Related work
	. Visual Program Distillation (VPD)
	. Program generation and verification
	. Distilling step-by-step

	. Experiments
	. Experimental setup
	. Quantitative results
	. Human evaluation on rationales

	. Experiments on content moderation
	. Unsupervised setting
	. Supervised setting

	. Conclusion, limitations, and future work
	. Acknowledgements
	. Examples outputs of our data-synthesis pipeline
	. Experimental details
	. Model architecture details
	. Datasets
	. Training details
	. Inference costs

	. Human evaluation
	. Comparison with visual programs
	. Qualitative Examples on Content Moderation
	. Prompts
	. Prompt for code generation
	. Prompt for result verification
	. Prompt for CoT conversion

	. Limitations and future directions

