
Benchmarking Implicit Neural Representation and Geometric Rendering in
Real-Time RGB-D SLAM

Supplementary Material

1. Implementation Details

We conducted the benchmark leaderboard using a 2.60GHz
Intel Xeon Platinum 8358P CPU and an A800-SXM4-
80GB GPU. In contrast, the influence of network structure
(refer to Table 1 in the main paper) and mapping time of
Explicit Hybrid Encoding was evaluated on a 2.10GHz In-
tel Xeon Gold 5218R CPU and an NVIDIA GeForce RTX
3090. Our experiments were carried out within the unified
SLAM framework, utilizing synthetic datasets for consis-
tency and control. The system initialization was performed
with the first posed RGB-D frame, followed by an opti-
mization over 500 iterations. For subsequent tracking and
mapping, we conducted optimizations over 20 iterations,
sampling 1024 and 2048 pixels, respectively. A keyframe
was defined as every 5th input frame. Here, 5% of the
pixels were randomly sampled and stored for global bun-
dle adjustment purposes. For each sampled pixel, we se-
lected 60 coordinates along its ray. Within the truncated
region (T = 10cm), 12 coordinates were uniformly sam-
pled, and an additional 48 were drawn uniformly from the
free space for pixels with depth information. In cases with-
out depth information, the 60 points were uniformly sam-
pled. All hybrid representations (i.e. F ! = MLP) utilized
coarse and fine feature spatial splittings with resolutions of
24cm and 2cm, respectively. The feature dimensions for
each resolution level were set to 2 and concatenated into a
4-dimensional vector for processing by color and geometry
decoders. These decoders are comprised of small, shallow
MLPs with 2 layers and 32 hidden channels. We configured
the color loss as λp = 5, the rendered depth loss as λg = 1,
and the SDF losses as λt = 200, λc = 50, and λfs = 10,
respectively.
Cover figure (Fig. 1) was produced using configurations
that differ slightly from our standard setup. For this fig-
ure, the initialization phase was extended to 1000 iterations.
We documented the highest PSNR value obtained in the
last three iterations for both our method and NICE-SLAM.
For mapping, we increased the number of sampled pixels
to 4080, while for tracking purposes, we used 2048 pixels.
The iterations for mapping and tracking were set to 30 and
20, respectively. Notably, the figure relies on SDF (den-
sity) functions with 8-dimensional features, which is ×4
less than the configuration used in [12] and does not require
pre-trained models.

The differences in feature dimensions and SDF trans-
formation functions utilized during initialization are fur-
ther detailed in Fig. 2. The reconstructed accuracy (Acc.)

N
IC

E
-S

L
A

M
O

ur
s

PSNR(Init.): 36.28[db]

PSNR(Init.): 19.22[db]

Figure 1. Comparison of the hierarchical dense grid as im-
plemented in our benchmark with the previous state-of-the-art
(SOTA) [12]. Right column: Meshes trained on the initial RGB-D
frame for 1000 iterations.

SDF(density)SDF(direct)

D
im

=
8

D
im

=
2

Figure 2. Dense grid initialization visualized at the first posed
frame over 500 iterations for different rendering functions, featur-
ing 2 and 8-dimensional settings.

for Fig. 1 is reported as 1.53cm, with ATE of 0.73cm. This
represents a significant improvement, approximately 60%
better, compared to the 3.87cm (Acc.) and 1.95cm (ATE)
achieved by NICE-SLAM. The ATE record for NICE-
SLAM can be found in Table 1 of [11]. A comparative
demonstration of the dense grid representation with our
baseline configuration, used for the main leaderboard, can
be found in Fig. 5.
Training specification. Firstly, we specify the photometric



and geometric losses in accordance with Eq. (4) in the main
paper:

Lp =
1

M
∑
x

(epx)
2,Lg =

1

Msub

∑
x

(egx)
2 (1)

In this context, M denotes the global list of sampling pixels
(e.g., key frames), and Msub represents the subset of those
pixels with non-zero depth values. To estimate the SDF si
for each sample point pi, a geometric constraint is applied:

esdfi = di + s̃i · T − dx (2)

Hence, for points pi located within the truncated region i ∈
PT , defined by the condition |dx − di| < T , the SDF loss
is formulated as follows:

Lsdf =
1

Msub

∑
x

1

PT

∑
i

(esdfi )2 (3)

Moreover, by defining the area between the camera center
and the truncation boundary T as free space, we apply con-
straints to points in this region, denoted as i ∈ P fs:

efsx = s̃x − 1 (4)
This leads to the establishment of the free space loss:

Lfs = Lfs =
1

Msub

∑
x

1

Pfs

∑
i

(efsi )2 (5)

Following the approach described in [4], we differentiate
the importance of samples within the truncation region by
applying distinct weighting factors: λc for samples close to
the surface and λt for those near the truncation boundary.
The overall objective function is as follows:

L = λpLp + λgLg + λtLt
sdf + λcLc

sdf + λfsLfs (6)

2. Performance Trade-off
Benchmark Considerations. Our benchmark study strictly
controls feature dimensions and spatial resolution. How-
ever, optimal performance in such controlled comparisons
may not always align with real-world application priorities.
For example, a minor compromise in accuracy (a 1mm de-
crease in trajectory estimation accuracy) can lead to sub-
stantial gains in efficiency, such as an 87.93% reduction in
memory usage, as shown in Fig. 3. Hence, in practical sce-
narios, a hybrid approach combining tri-plane and hash en-
codings might be a preferable alternative to the tri-plane and
dense grid combination.
Comparison with Existing Work. We compared our hy-
brid designs with a SLAM system that employs similar joint
encoding strategies, i.e. Co-SLAM [8]. The dense grid-
based hybrid encoding exhibits superior performance, al-
beit at the cost of significantly higher memory consump-
tion Fig. 3. Interestingly, the Hybrid (Hash+Tri) configura-
tion, while not excelling in inference capabilities or memory
efficiency in Tab. 1, emerges as the most practical option for
real-world applications. As illustrated in Fig. 4, our hybrid
encoding notably reduces artifacts compared to Co-SLAM.

Figure 3. Memory-performance trade-offs: Using dense grid-
based hybrid encoding as a baseline, hash-based alternatives
demonstrate significant memory savings. This efficiency is main-
tained even with an ×8 increase in resolution levels for hybrid
encoding of hash grid and tri-plane.

SLAM
ATE↓
[cm]

Depth L1↓
[cm]

PSNR↑
[dB]

Model Size↓
[MB]

Hybrid(Dense+Tri)
2× 8

1.73 1.55 26.46 1364.28

Hybrid(Hash+Tri)
16× 2

1.92 1.64 25.79 42.45

Co-SLAM*
16× 2

1.83 1.64 25.41 7.25

Table 1. Grid-based Hybrid Representations vs. Co-SLAM ([8]).
The asterisk denotes Co-SLAM’s performance as measured by im-
plementing its open-source code.

This is achieved with a minimal trade-off in trajectory ac-
curacy (only 1mm lower than Co-SLAM) for the Hash+Tri
combination. Regarding inferring performance, our Hybrid
(Dense+Tri) encoding achieves the best ATE, Depth L1, and
PSNR scores, as detailed in Tab. 1.
Pose Estimation & Scene Completion. Previous research
has established that greater completeness in unobserved re-



Inside

Hybrid(Hash+Tri) Hybrid(Dense+Tri) Co-SLAM

Figure 4. Visualization of ’breakfast room’ sequence of NeuralRGBD dataset [1].

SLAM Acc.↓ [cm] Comp.↓[cm] Comp.% ↑ [%]
Hybrid(Dense+Tri)

2× 2
2.40 4.64 83.48

Hybrid(Dense+Tri)
2× 8

2.41 4.64 83.81

Hybrid(Hash+Tri)
16× 2

2.48 4.67 83.83

Co-SLAM*
16× 2

2.23 4.52 84.27

Table 2. Comparison of Final Reconstruction Metrics. Evaluation
based on the culling method from [1].

gions often enhances overall trajectory estimation [8, 12].
Nonetheless, deploying the entire coarse level of the dense
grid is computationally demanding [12], and alternative
one-blob encoding strategies can produce excessive arti-
facts [8], potentially posing risks or inconveniences in ap-
plications like robotic navigation. Our hybrid encoding,
which combines a tri-plane and hash grid, successfully ad-
dresses these challenges. Ultimately, trajectory accuracy
seems to be more dependent on precise scene perception, as
indicated by superior PSNR and Depth L1 metrics in Tab. 1,
than on completeness Tab. 2.

About sampling & loss & keyframe settings. Although
settings like loss & keyframe are critical and might pose
different levels of impact on F & G, these are not the fo-
cus of our work. The reasons are two-fold: 1) Given the
intention of benchmarking, we must avoid an explosion
of choices that overshadow the key insights within limited
pages. 2) Discussion of these choices in the current bench-
mark might be less insightful. We suggest establishing an
additional novel benchmark based on real-world challenges,
e.g. large-scale and multi-agents scenarios [3, 7], where set-
tings like loss & keyframe selection are discussed within
more meaningful contexts, rather than just facilitating nu-
merical improvement in current benchmark scenarios. Nev-
ertheless, we provide a toy example of setting alternatives
from other SOTA baselines on ’room0’ sequence in Tab. 3.

Strategy DepthL1↓ PSNR↑ TrackTime↓ MapTime↓
Sampling variant 3.41↑ 24.59↓ 274↑ 752↑

Loss variant 85.5 ↓ 22.47 ↓ 290 ↑ 776 ↑
Keyframe variant 4.82↑ 26.00 ↑ 279 ↑ 757 ↑

Original 4.83 25.58 300 785

Table 3. ↑ & ↓ indicating improvement & worsen compared to the
original F(dense)+G(density). Variants are on importance sam-
pling, free space loss, and global keyframe sampling, respectively.

N
IC

E
-S

L
A

M
O

ur
s

Figure 5. Dense Grid (density) compared to NICE-SLAM under
benchmark configurations (Dimensions×Resolutions are 2×2 for
Ours vs 32×3 for NICE-SLAM).

3. Runtime

We report the runtime of hybrid encoding (for SLAM) and
explicit hybrid encoding (for mapping), evaluated on Neu-
ralRGBD [1] and Scannet Dataset [2] in Tab. 4 and Tab. 5,
respectively. For uniformly recorded map updating times,
explicit hybrid encoding achieves speeds approximately ×3
faster than NICE-SLAM. Visual demonstration is available
in Fig. 6.



Dataset Mesh

(With Dataset Pose)

NICE-SLAM

(With Dataset Pose)

Explicit Hybrid Encoding

(With Dataset Pose) 

01
69

02
07

Figure 6. Qualitative evaluation of Hybrid Explicit Encoding on ScanNet Dataset. Both NICE-SLAM and Ours run on the posed RGB-D
stream to simulate an externally provided tracker.

SLAM 0000 0059 0169 0181 0207 Avg.
NICE-SLAM*

3× 32
4.65 3.74 4.39 3.28 3.20 3.83

Explicit Hybrid Encoding
1× 2

2.14 1.02 0.94 0.73 0.87 1.14

Table 4. Runtime (explicit hybrid encodings) Comparison Mea-
sured in Seconds. The asterisk denotes NICE-SLAM runtimes ob-
tained using ground truth poses, based on its open-source code.

Time Hybrid br ck gr gwr ma tg w Avg.

Tr
ac

ki
ng

Dense+Tri
2× 8

267 512 370 288 275 281 354 335

Hash+Tri
2× 8

248 238 242 242 279 277 235 251

M
ap

pi
ng

Dense+Tri
2× 8

713 2441 1502 903 676 654 1381 1181

Hash+Tri
2× 8

572 536 563 558 631 614 555 575

Table 5. Runtime (hybrid encodings) Comparison Measured in
Milliseconds.

4. Limitations

In summary, the scene representations explored in this pa-
per primarily utilize spatial splitting along orthogonal co-
ordinates. However, recent advancements in point-based
methods [3, 6, 10] have demonstrated the effectiveness of

newer scene representations like PointNeRF [9] and 3D
Gaussian [5], offering greater adaptability. This adaptabil-
ity paves the way for more sophisticated and robust systems
that could integrate SLAM-centric and NeRF-centric meth-
ods, which are currently addressed separately in our work.

Point-based methods, whether modeled as 3D Gaussians
with splatting-based rasterization [10] or as neural points
with volume rendering [3, 6], essentially handle points in
space. In neural point clouds, points directly represent spa-
tial features, augmented by neural network processing. For
3D Gaussian representations, each point acts as the center
of a Gaussian distribution, indicating not only a specific lo-
cation but also a surrounding area of influence. Notably,
splatting rasterization is generally less computationally de-
manding than volume rendering, which involves intricate
integration across the volume as noted in [5, 10].

Looking ahead, we anticipate a more comprehensive
evaluation that includes these recent approaches in implicit
scene representation and geometric rendering, under a ro-
bustified SLAM system design, which incorporates essen-
tial components like loop closure and odometry, to unify
both SLAM-centric and NeRF-centric methodologies.

References
[1] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,

Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. In Proceedings of the IEEE/CVF Conference



on Computer Vision and Pattern Recognition, pages 6290–
6301, 2022. 3

[2] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017. 3

[3] Jiarui Hu, Mao Mao, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Cp-slam: Collaborative neural point-based
slam system. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems, 2023. 3, 4

[4] Mohammad Mahdi Johari, Camilla Carta, and François
Fleuret. ESLAM: efficient dense SLAM system based
on hybrid representation of signed distance fields. CoRR,
abs/2211.11704, 2022. 2

[5] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 4

[6] Erik Sandström, Yue Li, Luc Van Gool, and Martin R Os-
wald. Point-slam: Dense neural point cloud-based slam. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 18433–18444, 2023. 4

[7] Yijie Tang, Jiazhao Zhang, Zhinan Yu, He Wang, and Kai
Xu. Mips-fusion: Multi-implicit-submaps for scalable and
robust online neural rgb-d reconstruction. arXiv preprint
arXiv:2308.08741, 2023. 3

[8] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. Co-
slam: Joint coordinate and sparse parametric encodings for
neural real-time slam. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13293–13302, 2023. 2, 3

[9] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf:
Point-based neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5438–5448, 2022. 4

[10] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang,
Bin Zhao, and Xuelong Li. Gs-slam: Dense visual slam
with 3d gaussian splatting. arXiv preprint arXiv:2311.11700,
2023. 4

[11] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation. In
2022 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR), pages 499–507. IEEE, 2022. 1

[12] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-
feys. NICE-SLAM: neural implicit scalable encoding for
SLAM. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 12776–12786. IEEE, 2022. 1, 3


	. Implementation Details
	. Performance Trade-off
	. Runtime
	. Limitations

