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A. Experimental Details
Pretrained Models. In this paper, we use ViT-B/16 [?
] and Swin-B [? ] for all experiments. For standard
pretrained models, we use the model in Torchvision for
ImageNet-1k ViT, while obtaining the weights for CLIP
ViT from hugging face 1. Additionally, we download the
weights for the ImageNet-1k Swin transformer from the of-
ficial implementation2.

The adversarially robust models are pretrained on
ImageNet-1k using PGD-3 with ε = 4/255 and a step size
of 2ε/3 following [? ? ]. All weights for the adversarially
robust pretrained models can be found at ARES 2.0 bench-
mark3.

Datasets Split. For CIFAR10 and CIFAR100 [? ], we
follow the official train-validation-test splits. For Cal-
tech256 [? ], we randomly select 14,649 images (57 images
per class) for training and 771 images (3 images per class)
for validation, leaving the remaining images for the test set.
For CUB200 [? ], we adopt the official train-test split and
randomly select 600 images from the train set (3 images per
class) as the validation set. For Stanford Dogs [? ], we also
follow the official train-test split and randomly pick 1200
images from the train set (10 images per class) as the vali-
dation set.

PEFT Hyperparameters. In this paper, we use six fine-
tuning methods including Full Finetune, Adapter, LoRA,
Bias, VPT, and Linear. For Full Finetune, Bias, and Lin-
ear, no extra hyperparameters are required as they fine-tune
either part or the entirety of the model parameters.

For Adapter, we adopt the architecture proposed in [?
], which involves appending the adapter module after the
MLP block at each layer. Additionally, we apply a residue
connection for the adapter module. Throughout the paper,
we maintain a reduction factor of 8. When implementing
RoLI, we initialize the downsample and upsample layers
within the adapter module to zero.

We only apply the LoRA branch on the query and value
projection in the self-attention block. Following [? ], with
pretrained weights W0 and input x, the LoRA branch can
be formulated as Eq. (1)

h = W0x+
α

r
BAx (1)
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where A and B represent low-rank decomposition matrices
with a rank of r. α demotes a scaling constant. We set both
the rank r and scaling factor α to 16 across all datasets. For
random linear initialization (RanLI), we adopt the initial-
ization proposed in [? ], applying random Gaussian initial-
ization for A and zero initialization for B. For robust linear
initialization (RoLI), we zero matrices A and B.

For VPT, we adopt VPT-Deep in [? ]. We set the num-
ber of tokens as 10 across all datasets. We apply uniform
initialization for prompts in RanLI. We do not apply RoLI
to VPT because even when prompts are zeroed, the result-
ing output remains distinct from the output obtained without
prompts. This difference can be attributed to the influence
of the softmax operation within the attention module.

Optimizatation Hyperparameters. We finetune the
model for 20 epochs on CIFAR10 and CIFAR100, 40
epochs on Caltech256 and Standford Dogs, 60 epochs on
CUB200. Furthermore, we conduct a grid search to deter-
mine the optimal learning rate and weight decay based on
validation performance. The weight decay search range is
consistent at {0.01, 0.001, 0.0001, 0} across all fine-tuning
methods and datasets.

The learning rate is set as base lr × b/256. Regard-
ing the base learning rates, for RanLI, we explore {0.005,
0.001, 0.0001, 0.0005} for Full Finetune and Bias, {1.0,
0.5, 0.1, 0.05} for Linear, {0.5, 0.1, 0.05, 0.01} for VPT,
and {0.05, 0.01, 0.005, 0.001} for Adapter and LoRA. For
RoLI, we expand the search range to include values an order
of magnitude lower, such as {0.005, 0.001, 0.0001, 0.0005,
0.00001, 0.00005} for Full Finetune.

We summarize the optimal hyperparameters combina-
tion in Tab. 2.

Transferred Accuracy and Transferred Robustness ??
demonstrates that transferred robustness is correlated with
transferred accuracy. We train the model using various hy-
perparameters and pair the accuracy in standard linear prob-
ing with the robustness in adversarial linear probing using
the same hyperparameters. For example, following the no-
tation introduced in ??, a pair obtained through finetuning
is [acc(FTstd)i, rob(FTadv)i], while a pair resulting from
linear probing is [acc(LPstd)j , rob(LPadv)j ].

Following this, we calculated the transferred accuracy
and robustness between any two pairs—comparing one
from full finetuning and another from linear probing:

(accTstd)ij =
acc(LPstd)j − acc(FTstd)i

acc(FTstd)i
(2)

https://huggingface.co/laion/CLIP-ViT-B-16-laion2B-s34B-b88K
https://github.com/microsoft/Swin-Transformer
https://github.com/thu-ml/ares/tree/main/robust_training


Initialization RegLI StdLI RoLI

Accuracy 92.08 92.75 91.55

Table 1. Accuracy of different initialization methods.

(robT
adv)ij =

rob(LPadv)j − rob(FTadv)i
rob(FTadv)i

(3)

Where (accTstd)ij and (robTadv)ij are transferred accuracy
and transferred robustness for pairs i and j. For example,
on CIFAR10, where we used 5 pairs for full fine-tuning and
6 pairs for linear probing, our plot on ?? will display 30 data
points representing these comparisons.

Speed Analysis In ??, we analyze the trade-off between
robustness and speed. We use a single NVIDIA RTX A6000
to conduct the experiments. For RanLI, we use the same hy-
perparameter search strategy and training epochs. The only
difference is that RoLI applies adversarial training while
RanLI does not. For RegLI, we implement logistic regres-
sion using the sklearn [? ] library. Additionally, we also
summarize the performance for these initialization methods
without further adversarial finetuning in Tab. 1.

B. More Ablation Studies
RoLI Mitigates Overfitting. Overfitting is a general phe-
nomenon for adversarial training, as highlighted in prior re-
search [? ? ]. Although intuitively PEFT methods could
mitigate overfitting as they only update a small number of
parameters, we observe that they still suffer from overfit-
ting. Taking adversarial Adapter on Stanford Dogs as an ex-
ample in Fig. 1, RanLI suffers from overfitting, while RoLI
effectively mitigates this phenomenon. Specifically, adver-
sarial linear probing (RoLI) avoids overfitting possibly be-
cause it does not change the features during finetuning. In
addition, when we initialize adversarial Adapter with RoLI,
we can use a smaller learning rate during finetuning, result-
ing in a further decrease in loss without overfitting.

Image Gradient Visualization. In this section, we
present visualizations of the loss gradient with respect to
the input image for different PEFT methods using either
an adversarially robust or non-robust pretrained model on
the Caltech256 dataset. Fig. 2 illustrates semantically struc-
tured gradients obtained from adversarially robust pretrain-
ing, whereas non-robust pretraining yields less semantically
structured gradients, except fully finetuning. This observa-
tion aligns with our results, where fully finetuning outper-
forms other methods when a non-robust pretraining is ap-
plied. In contrast to fully finetuning, the image gradients
from PEFT methods contain less semantic information, fur-
ther validating our results.

0 20 40 60 80
Epochs

1

2

3

4

5

6

7

8

Lo
ss

RanLI - Adaptertrain
RanLI - Adapterval
RoLItrain
RoLIval
RoLI - Adaptertrain
RoLI - Adapterval

Figure 1. RoLI mitigates overfitting. For RoLI, the loss for the
adversarial linear probing stage and Adapter finetuning stage is
denoted as red and light red lines, respectively. The decreasing
validation loss demonstrates that RoLI can mitigate overfitting.
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Figure 2. A robust pretrained model exhibits more semantically
structured gradients compared to a standard pretrained model.

C. RoLI Pseudo Code
Algorithm 1 RoLI with adversarial finetuning

Input: Dataset D, Model θ, Parameters in linear head θhead, Tun-
able parameters in each adversarial finetuning method θft, Perturbation
bound ε, Loss function L
Output: Adversarially robust model θ∗

// Initialize tunable parameters in linear head.
Random initialize θhead
// Robust Linear Initialization
θ̂ ← θhead, θfrozen ← θ \ θhead
θ̂ ← minθ̂ E(x,y)∼D

[
max∥δ∥∞≤ε L(x+ δ, y; θ̂ ∪ θfrozen)

]
θ ← θ̂ ∪ θfrozen
// Adversarial FT, tunable parameters shown in Fig. 1
θ̂ ← θft, θfrozen ← θ \ θft
θ̂ ← minθ̂ E(x,y)∼D

[
max∥δ∥∞≤ε L(x+ δ, y; θ̂ ∪ θfrozen)

]
θ∗ ← θ̂ ∪ θfrozen

D. Numerical Results
For ??, the numerical results are in ?? average column. The
results for TWINS-AT [? ] and AutoLoRa [? ] are from
their original papers. We show the numerical results for
?? in Tab. 3. We do not include the CLIP results for Swin
Transformer because the CLIP pretrained weights are only
available for ResNet-50 [? ] and ViT [? ]. Tab. 4 displays
the numerical results corresponding to ?? and ??.



Datasets CIFAR10 CIFAR100 Caltech256 CUB200 Dogs
Hyperparameters Base Lr Wd Base Lr Wd Base Lr Wd Base Lr Wd Base Lr Wd

RanLI - Full-FT 0.0005 0.01 0.0005 0.001 0.0005 0.0001 0.0005 0.001 0.0005 0.01
RanLI - Adapter 0.05 0.01 0.005 0.0001 0.005 0.0001 0.05 0.0001 0.005 0.0001
RanLI - LoRa 0.01 0.0001 0.05 0 0.001 0.0001 0.005 0.0001 0.005 0.0001
RanLI - Bias 0.005 0.001 0.005 0.001 0.001 0.01 0.005 0.001 0.001 0.0001
RanLI - VPT 0.5 0.001 0.5 0.01 0.05 0.001 0.05 0.001 0.05 0.0001
RanLI - Linear 0.05 0.01 0.1 0.001 0.5 0.01 1 0.001 1 0.01

RoLI - Full-FT 0.0001 0.01 0.0001 0.001 0.0001 0.0001 0.0001 0.01 0.00005 0.001
RoLI - Adapter 0.05 0.01 0.05 0.0001 0.0005 0 0.05 0.001 0.0001 0.0001
RoLI - LoRa 0.001 0.0001 0.001 0.0001 0.0001 0 0.005 0.0001 0.001 0.01
RoLI - Bias 0.005 0.001 0.005 0.01 0.00001 0 0.0005 0.0001 0.00005 0.0001

Table 2. Summary of the optimal hyperparameter combination across five datasets.

Model Methods
CIFAR10 Caltech256

IN CLIP Robust IN IN CLIP Robust IN
Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD Clean PGD

ViT

Full-FT 87.91 50.45 78.53 45.26 89.32 51.62 52.82 25.91 37.16 5.29 71.01 36.68
Adapter 64.19 29.13 58.70 28.51 88.17 52.63 46.24 10.94 7.95 6.60 78.11 46.51
LoRa 82.42 47.68 69.43 41.01 90.03 56.28 1.01 1.07 4.86 4.86 75.22 45.16
Bias 56.30 31.19 55.85 32.06 88.29 52.94 41.07 16.07 8.59 4.95 77.09 47.19
VPT 68.61 31.4 40.43 24.87 88.64 54.25 36.94 9.89 7.70 4.86 75.54 46.79

Linear 52.99 0.21 74.88 0.00 84.42 35.81 53.80 0.50 26.06 0.54 79.35 48.22

Swin

Full-FT 87.54 51.79 - - 93.02 59.12 62.71 34.77 - - 77.35 49.13
Adapter 70.32 32.83 - - 90.23 55.70 41.48 10.27 - - 80.24 52.73
LoRa 80.55 47.67 - - 90.02 56.88 0.29 0.28 - - 77.02 50.25
Bias 62.25 35.02 - - 90.25 56.94 1.44 1.44 - - 79.50 52.43
VPT 66.90 35.12 - - 90.24 57.38 45.22 18.36 - - 79.74 53.07

Linear 42.13 1.62 - - 84.16 37.30 25.92 0.60 - - 81.79 54.47

Table 3. Numerical results for ??. We omit the results obtained from CLIP with Swin Transformer because the pretrained model is
unavailable.

Model Methods
CIFAR10 Caltech256

Standard FT Adversarial FT
∆ PGD

Standard FT Adversarial FT
∆ PGD

Clean PGD Clean PGD Clean PGD Clean PGD

ViT

Full-FT 97.58 9.57 89.32 51.62 42.05 80.02 6.41 71.01 36.68 30.27
Adapter 97.65 8.15 88.17 52.63 44.48 85.59 9.65 78.11 46.51 36.86
LoRa 97.80 21.58 90.03 56.28 34.70 84.85 6.49 75.22 45.16 38.67
Bias 97.95 9.35 88.29 52.94 43.59 86.66 4.09 77.09 47.19 43.10
VPT 97.51 10.22 88.64 54.25 44.03 85.27 8.96 75.54 46.79 37.83

Linear 89.57 19.87 84.42 35.81 15.94 82.85 32.72 79.35 48.22 15.50

Swin

Full-FT 98.66 0.92 93.02 59.12 58.20 87.89 0.16 77.35 49.13 48.97
Adapter 98.68 4.26 90.23 55.70 51.44 87.35 3.90 80.24 52.73 48.83
LoRa 98.49 13.51 90.02 56.88 43.37 87.24 1.49 77.02 50.25 48.76
Bias 98.80 7.06 90.25 56.94 49.88 88.49 0.79 79.50 52.43 51.64
VPT 98.39 14.62 90.24 57.38 42.76 86.61 11.50 79.74 53.07 41.57

Linear 90.33 21.91 84.16 37.30 15.39 85.01 47.10 81.79 54.47 7.37

Table 4. Numerical results for ?? and ??.


