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Datasets Sources Train (all-normal) Train (with labels) Test Sample size Annotation Level
BrainMRI BraTS2021 [1, 2, 15] 7,500 83 3,715 240*240 Segmentation mask
LiverCT BTCV[14] + LiTs [5] 1,452 166 1,493 512*512 Segmentation mask
RESC RESC [10] 4,297 115 1,805 512*1,024 Segmentation mask
OCT17 OCT2017 [13] 26,315 32 968 512*496 Image label

ChestXray RSNA [18] 8,000 1,490 17,194 1,024*1,024 Image label
HIS Camelyon16 [3] 5,088 236 2,000 256*256 Image label

Table 1. Summary of datasets from different medical modalities.

A. Medical Anomaly Detection Benchmark

The details of the medical anomaly detection (AD) bench-
mark are concisely summarized in Table 1. For the few-shot
AD scenario, we select a random subset of labeled training
samples, with K ∈ {2, 4, 8, 16}, from the labeled training
set (designated as “Train (with labels)” in Table 1). These
samples are employed in various competing baselines, in-
cluding CLIP [11], WinCLIP [12], DRA [8], BGAD [19],
and April-GAN [6]. Furthermore, consistent with the orig-
inal methodologies that require training on a substantial
amount of normal data, such as CFlowAD [9], RD4AD [7],
PatchCore [16], and MKD [17], we employ a dataset exclu-
sively comprising normal images. This dataset is referred to
as “Train (all-normal)” for training purposes. It is important
to highlight that this “all-normal” training set encompasses
considerably more data compared to the limited data used in
the few-shot scenario. Below are the detailed descriptions
of the datasets used in the medical AD benchmark:
BrainMRI: This dataset is built upon the BraTS2021
dataset [1, 2, 15], utilizing 3D FLAIR volumes. To account
for variations in brain images at different depths, slices
within the depth range of 60 to 100 of the 3D FLAIR vol-
umes are selected. Each extracted 2D slice was saved in
PNG format and has an image size of 240×240 pixels. The
training set encompasses 7,500 normal samples, while the
test set comprises 3,715 samples with a balanced ratio of
normal to anomaly instances.

LiverCT: Derived from two distinct datasets, BTCV [14]
and LiTS [5], this dataset is structured to facilitate anomaly
detection. The anomaly-free BTCV set, consisting of 50 ab-
dominal 3D CT scans, constitutes the training set, while the
test data comprises 131 abdominal 3D CT scans from LiTS.
For both datasets, Hounsfield-Unit (HU) of the 3D scans
are transformed into grayscale with an abdominal window.
The scans are then cropped into 2D axial slices, containing
1,452 2D slices for training and 1,493 2D slices for testing.
Retinal OCT: The benchmark includes two different OCT
AD datasets. The RESC dataset [10] offers pixel-level
segmentation labels, delineating regions affected by reti-
nal edema. In contrast, the OCT17 dataset [13] primarily
serves for classification tasks, featuring retinal OCT images
categorized into three types of anomalies.
ChestXray: This dataset comprises lung images, utilizing
RSNA [18] which was originally provided for a lung pneu-
monia detection task. Abnormal data encompasses cases of
“Lung Opacity” and cases of “No Lung Opacity/Not Nor-
mal”. The dataset is partitioned into 8,000 normal training
images and 17,194 images for testing.
HIS: Based on Camelyon16 [3], this dataset encompasses
400 whole-slide images (WSIs) of lymph node sections
stained with hematoxylin and eosin (H&E) from breast can-
cer patients. The training set incorporates 5,088 randomly
extracted normal patches from the original training set. For
testing, 1,003 normal and 997 abnormal patches from the
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(a) State-level (-:normal, +:abnormal)
- c := "[o]"
- c := "flawless [o]"
- c := "perfect [o]"
- c := "unblemished [o]"
- c := "[o] without flaw"
- c := "[o] without defect"
- c := "[o] without damage"
+ c := "damaged [o]"
+ c := "[o] with flaw"
+ c := "[o] with defect"
+ c := "[o] with damage"

(b) Template-level
• "a photo of a/the/one [c]."
• "a photo of a/the cool [c]."
• "a photo of a/the small [c]."
• "a photo of a/the large [c]."
• "a bright photo of a/the [c]."
• "a dark photo of a/the [c]."
• "a blurry photo of a/the [c]."
• "a bad photo of a/the [c]."
• "a good photo of a/the [c]."
• "a cropped photo of a/the [c]."
• "a close-up photo of a/the [c]."

• (cont’d) "a photo of my
[c]."

• "a low resolution photo
of a/the [c]."

• "a black and white photo
of a/the [c]."

• "a jpeg corrupted photo
of a/the [c]."

• "there is a/the [c] in
the scene."

• "this is a/the/one [c] in
the scene."

Figure 1. Lists of state and template level prompts employed in this paper to construct text features.

Table 2. Comparisons with state-of-the-art few-shot anomaly detection methods with K = 2, 4, 8, 16. The AUCs (in %) for anomaly
classification (AC) and anomaly segmentation (AS) are reported. The best result is in bold, and the second-best result is underlined.

Shot Number Method Source
HIS ChestXray OCT17 BrainMRI LiverCT RESC

AC AC AC AC AS AC AS AC AS

DRA [8] CVPR 2022 72.91 72.22 98.08 71.78 72.09 57.17 63.13 85.69 65.59
BGAD [19] CVPR 2023 - - - 78.70 92.42 72.27 98.71 83.58 92.10

APRIL-GAN [6] arXiv 2023 69.57 69.84 99.21 78.45 94.02 57.80 95.87 89.44 96.39
2-shot

MFA ours 82.61 81.32 97.98 92.72 96.55 81.08 96.57 91.36 98.11

DRA [8] CVPR 2022 68.73 75.81 99.06 80.62 74.77 59.64 71.79 90.90 77.28
BGAD [19] CVPR 2023 - - - 83.56 92.68 72.48 98.88 86.22 93.84

APRIL-GAN [6] arXiv 2023 76.11 77.43 99.41 89.18 94.67 53.05 96.24 94.70 97.98
4-shot

MFA ours 82.71 81.95 99.38 92.44 97.30 81.18 99.73 96.18 98.97

DRA [8] CVPR 2022 74.33 82.70 99.13 85.94 75.32 72.53 81.78 93.06 83.07
BGAD [19] CVPR 2023 - - - 88.01 94.32 74.60 99.00 89.96 96.06

APRIL-GAN [6] arXiv 2023 81.70 73.69 99.75 88.41 95.50 62.38 97.56 91.36 97.36
8-shot

MFA ours 85.10 83.89 99.64 92.61 97.21 85.90 99.79 96.57 99.00

DRA [8] CVPR 2022 79.16 85.01 99.87 82.99 80.45 80.89 93.00 94.88 84.01
BGAD [19] CVPR 2023 - - - 88.05 95.29 78.79 99.25 91.29 97.07

APRIL-GAN [6] arXiv 2023 81.16 78.62 99.93 94.03 96.17 82.94 99.64 95.96 98.47
16-shot

MFA ours 82.62 85.72 99.66 94.40 97.70 83.85 99.73 97.25 99.07

115 testing WSIs are utilized.

B. Text Prompt Formatting
In this study, we adopt a combination of state-level and
template-level prompts for generating textual input for the
text encoder, as detailed in Figure 1 and following the ap-
proach in [12]. The state-level prompts are ingeniously
designed by substituting the token [o] with names of hu-
man organs such as “brain”, “liver”, etc. This substitution
strategy allows us to create a varied range of prompts that
can categorize images as “normal” or “abnormal” based
on the organ context. We then incorporate these state-
level prompts into broader template-level constructs. By re-
placing the placeholder [c] in a template-level prompt with
a corresponding state-level prompt, we formulate prompts
that are both comprehensive and contextually rich. This sys-

tematic approach enables the creation of detailed, context-
specific prompts that accurately distinguish between the
normal and abnormal states.

C. Additional Quantitative Results
Results Varied Shot Numbers: Table 2 provides a de-
tailed quantitative analysis on the performance of our medi-
cal AD approach, benchmarking it against leading few-shot
AD methodologies. This analysis is meticulously tabulated,
showing our approach’s performance specificity across dif-
ferent shot numbers (K ∈ {2, 4, 8, 16}). These results lay
the groundwork for a line chart featured in the main pa-
per, which visually captures the subtle differences in per-
formance under various conditions.
Ablation Study on Multi-level Features: We carried out
an extensive ablation study to evaluate the effectiveness of



Table 3. Ablation study of multi-level features without multi-level training. The AUCs (in %) for classification (AC) and segmentation
(AS) under the few-shot setting (k=4) are reported. The best result is in bold, and the second-best result is underlined.

Layers
HIS ChestXray OCT17 BrainMRI LiverCT RESC

AC AC AC AC AS AC AS AC AS

Layer 1 74.54 78.69 97.75 87.84 97.05 58.15 98.47 88.76 97.58
Layer 2 81.36 81.09 99.84 90.81 97.34 85.36 99.58 94.54 98.81
Layer 3 69.00 79.75 98.68 83.01 94.34 63.78 95.35 93.29 98.40
Layer 4 71.02 72.84 99.37 86.92 95.42 76.09 97.92 93.72 98.23

Ensemble 82.71 81.95 99.38 92.44 97.30 81.18 99.73 96.18 98.97

Table 4. Ablation study of multi-level features with multi-level training. The AUCs (in %) for classification (AC) and segmentation (AS)
under the few-shot setting (k=4) are reported. The best result is in bold, and the second-best result is underlined.

Layers
HIS ChestXray OCT17 BrainMRI LiverCT RESC

AC AC AC AC AS AC AS AC AS

Layer 1 71.19 78.80 94.82 87.47 97.13 80.04 99.67 88.03 97.15
Layer 2 80.88 83.56 99.49 92.41 97.35 80.98 99.61 95.73 98.90
Layer 3 82.35 58.32 96.96 93.01 97.14 81.10 99.59 94.18 98.90
Layer 4 81.43 64.58 95.36 92.86 94.43 81.32 99.59 92.17 98.31

Ensemble 82.71 81.95 99.38 92.44 97.30 81.18 99.73 96.18 98.97

0.81 0.75 0.75 0.096 0.097 0.099

0.97 0.96 0.97 3.4e-5 1.4e-3 2.0e-3

0.94 0.91 0.94 0.067 0.062 0.093

(a) Abnormal Samples (b) Normal Samples

Figure 2. Examples of (a) abnormal samples and (b) normal samples on chest X-ray, histopathology, and retinal OCT. The predicted scores
by our method are shown with each sample. The higher the score, the more likely to be an anomaly.

utilizing single-layer features for each dataset, in line with
the average performances across all datasets discussed in
the main paper. The outcomes, elucidated in Table 3, pro-
vide a comprehensive understanding of the performance of
single-layer features obtained without the implementation
of multi-level training. In contrast, Table 4 presents the re-
sults attained through the strategic implementation of multi-
level training techniques.

D. Additional Qualitative Results

Anomaly Classification Instances: In Figure 2, we display
the results of anomaly classification from datasets that only
provide anomaly classification labels. These results were
obtained using our method in a few-shot setting (K = 4).
Each instance is accompanied by a predicted score, rang-
ing from zero to one, where higher scores indicate a higher
likelihood of an anomaly.



Table 5. Comparisons with state-of-the-art methods on in-domain dataset MVTec AD. The AUCs (in %) for classification (AC) and
segmentation (AS) under the few-shot setting (k=4) are reported.

Category (k=4)
RegAD WinCLIP April-GAN MVFA

AC AS AC AS AC AS AC AS

bottle 99.3 98.5 99.3 97.8 94.2 97.2 99.8 98.7
cable 82.9 95.5 90.9 94.9 76.7 91.8 88.0 87.3

capsule 77.3 98.3 82.3 96.2 93.5 97.5 93.9 96.0
carpet 97.9 98.9 100 99.3 99.9 98.7 100 99.4
grid 87.0 85.7 99.6 98.0 99.2 97.6 100 96.9

hazelnut 95.9 98.4 98.4 98.8 98.8 97.7 99.7 98.1
leather 99.9 99.0 100 99.9 100 99.5 99.9 99.4

metal nut 94.3 96.5 99.5 92.9 91.0 93.1 99.4 99.3
pill 74.0 97.4 92.8 97.1 84.1 95.5 95.1 96.8

screw 59.3 96.0 87.9 96.0 83.7 98.5 88.3 98.5
tile 98.2 92.6 99.9 96.6 99.1 96.0 99.7 98.7

toothbrush 91.1 98.5 96.7 98.4 93.2 98.8 95.8 98.8
transistor 85.5 93.5 85.7 88.5 84.1 83.7 84.3 80.9

wood 98.9 96.3 99.8 95.4 98.7 96.2 99.7 97.2
zipper 95.8 98.6 94.5 94.2 95.4 96.6 99.3 98.9

average 89.2 96.2 95.2 96.3 92.8 95.9 96.2 96.3

add

add

Image Ground Truth Layer 1 Layer 2 Layer 3 Layer 4 Final Prediction

Single-Layer Heatmap Ensemble

add

add

add

add

Figure 3. Visualization of anomaly segmentation heatmaps from the four single layers and the multi-layer ensemble results. The white
dashed boxes demarcate regions that have been missed or erroneously segmented.
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Figure 4. Model structures corresponding to the ablation experimental settings.

Ensemble of Multi-level Features: Figure 3 showcases vi-
sualizations from different layers used in the anomaly seg-
mentation task. These visualizations include results from
datasets with segmentation labels, such as BrainMRI, Liv-
erCT, and RESC.
Evaluation on Industrial Anomaly Detection: For in-
domain evaluation, the MVTec AD benchmark [4], consist-
ing of 15 industrial defect detection sub-datasets, is consid-
ered. MVFA significantly outperforms competing methods,
highlighting its superior generalization capabilities. De-
tailed results for each sub-dataset are included in Table 5.

E. Ablation Model Structure

To effectively convey the nuances of our ablation study in
the main paper, we utilized Figure 4 to graphically demon-

strate the configurations of the models used in our experi-
ments. Specifically, Figure 4 (a) visually details the designs
of both the adapter and projector as outlined in Table 4 of
the main paper, where part (i) illustrates the projector and
part (ii) depicts the adapter. In Figure 4 (b), we present the
configurations for both the single-adapter and dual-adapter
models, shown in subfigures (i) and (ii) respectively. Fur-
thermore, Figure 4 (c) illustrates the testing pipeline for
assessing the impact of training at different levels. Sub-
figure (i) represents the scenario of single-layer training,
while subfigure (ii) demonstrates the approach for multi-
level training, corresponding to the discussions and findings
presented in Table 5 of the main paper.

Dual-Adapter vs. Single-Adapter. We compare the per-
formance of the dual-adapter architecture against the single-



Table 6. Ablation studies of the architecture of dual-adapter
against single-adapter in MVFA. The AUCs (in %) for classifica-
tion (AC) and segmentation (AS) under the few-shot setting (K=4)
are reported, with the best result marked in bold.

Datasets
AC AS

single-
adapter

dual-
adapter

single-
adapter

dual-
adapter

HIS 80.80 82.71 - -
ChestXray 78.02 81.95 - -

OCT17 99.87 99.38 - -
BrainMRI 92.28 92.44 96.98 97.30
LiverCT 81.07 81.18 99.42 99.73
RESC 94.06 96.18 98.53 98.97

average 87.68 88.97 98.31 98.67

adapter setup within the few-shot setting. The dual-adapter
design, as implemented in our MVFA model, generates two
parallel sets of features at each level, catering to both global
(classification) and local (segmentation) aspects. The cor-
responding architectures are shown in Figure 4 (b). Ac-
cording to the results in Table 6, the dual-adapter approach
outperforms the single-adapter model on almost all the
datasets. We observed an enhancement in the average AUC
for AC, improving from 87.68% to 88.97%, and for AS,
rising from 98.31% to 98.67%. This improvement indicates
that the dual-adapter architecture is more effective in man-
aging the demands of both AC and AS in medical images.
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