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We present additional implementation details and analysis
of our proposed method AlignSAM in this supplementary
material.

1. Implementation Details

We illustrate the textual prompts for the implentation of
explict branch on different datasets in Table 1. The “text
Prompt” in the last column is utilized as textual input of the
CLIP-Surgery Model.

2. Comparisons of Tuning Paradigms

This paper introduces a unified framework based on rein-
forcement learning to enable effective and efficient prompt-
ing for the vision foundation model SAM, without the need
to access the parameters of the backbone. We here report
the comparison results of our and existing paradigms for
adapting SAM into downstream tasks, in terms of five desir-
able properties, including frozen backbone (F), automatic
inference (A), gradient-free (G), source-free (S), and in-
terpretability (I). Specifically, freezing the parameters (F)
of the foundation model is required to alleviate the bur-
den of training costs due to the giant scale of the back-
bone model. “A” means automatic inference without addi-
tional guidance in the testing phase. Gradient-free methods
(G) do not require gradient information from the interme-
diate layer of the foundation model, which can be expen-
sive to compute during training. Source-free (S) methods
do not require training (reference) samples in the testing
phase which may be inaccessible due to privacy issues. In-
terpretability (I) implies that the prediction results are ex-
plicitly and strongly connected to the provided prompts for
the foundation model. As depicted in Table 2, our proposed
AlignSAM combines various desirable properties that can
be utilized for diverse downstream tasks.

Datasets Target Foreground Text Prompt
CUHK [3] Defocus background defocus background
SBU [4] Shadow of any object shadow
MSD [6] Mirror face glass
DUTS [5] Visually salient objects saliency object
Pascal-VOC [2] Common categories aeroplane/ bottle/...

Table 1. Summary of textual prompts for different datasets.

Methods F A G S I
Manual Prompting ✓ ✗ ✓ ✓ ✓
Full Fine-tuning ✗ ✓ ✗ ✓ ✗
Adapters / LoRAs [1, 7] ✓ ✓ ✓ ✓ ✗
In-Context Learning [8] ✓ ✓ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 2. Comparison results of our and existing paradigms for
adapting SAM into downstream tasks, in terms of five desirable
properties.

Method mIoU Bottle Car Sheep Cat

RL+SCLIP 58.24 45.64 62.39 64.40 85.20
RL+LAST 24.20 21.59 24.40 33.09 40.24
RL only 27.73 19.78 27.42 30.33 39.29

RL+SRM(Ours) 62.09 48.09 66.13 73.12 85.99

Table 3. Ablation study results of the proposed prompt labeling
module SRM. The performance results are calculated by averag-
ing IoU (%) of all the categories in Pascal-VOC 2012. “RL+X”
denotes utilizing the trained RL agent to perform prompt selection
and query the label of prompt from “X”.

3. Analysis of Prompt Label

At each timestep, the RL agent chooses a prompt position
from the action space and queries its corresponding label
(foreground or background) from the output of the SRM
module. Theoretically, all the selected points can be con-
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Method
Blur Shadow Glass Saliency Semantic

CUHK [3] SBU [4] MSD [6] DUTS [5] Pascal VOC [2]
mIoU ↑ FR mIoU ↑ FR mIoU ↑ FR Eϕ ↑ FR mIoU ↑ FR

Ours-w/o RL 59.75 63.80 25.62 18.30 33.41 22.80 74.19 14.60 54.06 23.20
Ours 68.47 70.90 30.78 24.80 45.44 43.70 78.21 32.90 62.09 36.70

Table 4. Ablation study results of the RL policy on different segmentation tasks. “Ours-w/o RL” denotes the degraded variant of the
proposed approach where the RL policy is replaced with random selection for the action decision. The best performance among all
approaches is highlighted in blod.
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Figure 1. Representative examples to illustrate the iterative point
selection and the corresponding segmentation results. The se-
quence progresses from left to right, showing a gradual increase
in the number of point prompts. The green and red stars denote
the positive and negative point prompts respectively. The input
image is covered by the segmentation mask shown in a light green
color. “GT” denotes the ground truth mask of the input image.

sidered positive foreground points since the agent is trained
to prioritize foreground areas. However, the RL agent can
only identify the target region at a coarse level due to the
limited space of actions, leading to potentially unreliable la-
beling. Alternatively, the prompt label can be queried from
the last prediction of SAM or the Vision-Language similar-
ity map. To verify the efficacy of the reference mask for
querying the prompt’s label, we replace the SRM module
by the above-mentioned variants. As shown in Table 3, our
method utilizing the prediction of the SRM module as the
label source consistently outperforms the other alternatives,
demonstrating the superiority of the prompt labeling strat-
egy.

4. Analysis of RL Policy
To investigate the strategy learned by the reinforcement
learning agent after training, we assess the disparity in ac-
tion selection between reinforcement learning strategy and
random sampling. We propose a Foreground Rate (FR) to
measure the ability to track the target of interest, which can
be formulated as follows:

FR =
∑

t∈[1,T ]

1{GI(at) = 1}/T, (1)

where GI(at) means querying the label of the chosen po-
sition from the ground truth mask for sample I . For both
the RL and random strategies, we set the number of inter-
action rounds T to 15 and report FR averaged on all the
testing samples in each dataset. As shown in Table 4, the
FR of the RL strategy significantly surpasses that of ran-
dom selection in all the reported scenarios, indicating the
high-value estimation of actions in the target area by the RL
network. As illustrated in Figure 1, our RL agent exhibits a
greater inclination for selecting point prompts in the vicinity
of the target area compared to random selection. The itera-
tive segmentation process highlights the advantages of em-
ploying the reinforcement learning strategy in multiple as-
pects. First, with a limited prompting budget, the RL agent
can proficiently capture the area of the target of interest,
thereby facilitating the segmentation of SAM. Secondly, in
scenarios with multiple disjointed target regions within an
image, utilizing the RL agent for prompt selection effec-
tively prevents the omission of target regions. In summary,
our RL agent consistently selects more points surrounding
the target area than random selection in diversified scenar-
ios, thereby unlocking the potential for progressive segmen-
tation refinement.

5. Analysis of Training Samples
To validate the robustness of AlignSAM, we compare it
with other competitive state-of-the-art (SOTA) methods
across various budgets of training samples. For each
dataset, the training samples are randomly sampled from
the training set and shared among different methods to en-
sure a fair comparison. As depicted in Table 5, AlignSAM
consistently outperforms the second-best SOTA method in
most scenarios. This implies that the RL agent and the SRM
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Figure 2. Hyper-parameter sensitivity to T and E of AlignSAM.

module can synergistically align SAM to the segmentation
objective even with a limited number of reference samples.

Method
Blur Glass Saliency

CUHK [3] MSD [6] DUTS [5]
5-shot 20-shot 5-shot 20-shot 5-shot 20-shot

PerSAM [8] 53.21 54.69 31.03 29.50 35.92 40.50
Ours 68.89 62.99 31.19 38.78 33.05 44.82

Table 5. Comparison results of our AlignSAM and PerSAM under
different numbers of training samples. The reported results denote
the performance of the models evaluated by mean IoU. The best
performance among all approaches is highlighted in blod. The
second-best competitor PerSAM [8] is selected as the representa-
tive of SOTA methods.

6. Hyper-Parameter Sensitivity
We further carry out investigations to check the sensitiv-
ity of the proposed approach to the key hyper-parameters
E and T . These experiments are conducted under three
scenarios with varying degrees of segmentation difficulty.
In Figure 2, we show the model performance of Align-
SAM when T and E are respectively set to {5, 10, 15, 18}
and {10, 30, 50, 80}. As illustrated, the model trained with
T = 15 and E = 50 exhibits notably superior and stable
performance compared to other configurations. This em-
phasizes the efficacy of setting both to 15 and 50, respec-
tively, as a good choice for the implementation.

References
[1] Tianrun Chen, Lanyun Zhu, Chaotao Deng, Runlong Cao, Yan

Wang, Shangzhan Zhang, Zejian Li, Lingyun Sun, Ying Zang,
and Papa Mao. Sam-adapter: Adapting segment anything
in underperformed scenes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3367–
3375, 2023. 1

[2] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer vi-
sion, 88:303–338, 2010. 1, 2

[3] Jianping Shi, Li Xu, and Jiaya Jia. Discriminative blur de-
tection features. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 2965–2972,
2014. 1, 2, 3

[4] Tomás F Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai,
and Dimitris Samaras. Large-scale training of shadow detec-
tors with noisily-annotated shadow examples. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part VI
14, pages 816–832. Springer, 2016. 1, 2

[5] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng,
Dong Wang, Baocai Yin, and Xiang Ruan. Learning to de-
tect salient objects with image-level supervision. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017. 1, 2, 3

[6] Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin,
and Rynson WH Lau. Where is my mirror? In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 8809–8818, 2019. 1, 2, 3

[7] Kaidong Zhang and Dong Liu. Customized segment any-
thing model for medical image segmentation. arXiv preprint
arXiv:2304.13785, 2023. 1

[8] Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junt-
ing Pan, Hao Dong, Peng Gao, and Hongsheng Li. Person-
alize segment anything model with one shot. arXiv preprint
arXiv:2305.03048, 2023. 1, 3


	. Implementation Details
	. Comparisons of Tuning Paradigms
	. Analysis of Prompt Label
	. Analysis of RL Policy
	. Analysis of Training Samples
	. Hyper-Parameter Sensitivity

