
Appendix of Bilateral Event Mining and Complementary
for Event Stream Super-Resolution

A. Dataset and Training Configuration
Synthetic Data Generation Method: We synthesized the
NFS-syn and RGB-syn datasets using an event simulator
[6]. Specifically, we initially downsampled the NFS dataset
[4] and RGB-DAVIS dataset [8] using bicubic interpola-
tion to obtain low-resolution images. The original reso-
lution of the NFS dataset is 1280 × 720, and we applied
2(4, 8, 16)× downsampling, while the RGB-DAVIS dataset
has an original resolution of 1520 × 1440, and we down-
sampled it by 2(4, 8)×. Subsequently, we generated event
streams through the event simulator, utilizing default initial
parameters. In the NFS-syn dataset, we considered the 16×
downsampled 80 × 45 data as the minimum resolution and
the 2× downsampled 360×180 data as the maximum reso-
lution, resulting in LR-HR pairs at 2(4, 8)×. For the RGB-
syn dataset, we used the 8× downsampled 190×180 data as
the minimum resolution and the 2× downsampled 760×720
data as the maximum resolution, resulting in LR-HR pairs at
2(4)×. And we applied data augmentations such as random
flipping and polarity inversion to the dataset, and randomly
split it for training and testing.
Training Configuration: During training, we applied sev-
eral enhancements to the event stream data, including ver-
tical and horizontal flipping of event count images and flip-
ping event stream polarities, each with a probability of 50%.
We randomly partitioned the data into training and testing
sets for EventNFS, NFS-syn, and RGB-syn. Training and
testing were performed on each dataset.

B. Pseudo Code of BIE
We provide the pseudo code of BIE, as presented in Algo-
rithm 1.

C. More Ablation Study
C.1. Effect of CIR

To verify the effectiveness of CIR in our proposed BIE,
we simply remove the CIR in BIE to make a qualitative
comparison with BIE (for the quantitative comparisons,
please refer to Tab. 3 in the main paper.). Moreover,
we present the previous LR frames which are denoted as

Algorithm 1 Pseudo code of BIE

1 # xp, xn: features of positive, negative event,
respectively

2 # xint: the cross-layer interaction
representation

3

4 def BIE(xp, xn, xint):
5 b, c, h, w = xp.shape
6 scale_factor = c ** 0.5
7

8 # (1) update xp and xn
9 xp_ = convp(xp)

10 xn_ = convn(xn)
11

12 # (2) obtain the query Q and the value V
13 Qp = conv_qp(LayerNorm(Conv2D(torch.cat([xint

, xp],dim=1)))).view(b,c,-1)
14 Qn = conv_qn(LayerNorm(Conv2D(torch.cat([xint

, xn],dim=1)))).view(b,c,-1)
15 Vp = conv_vp(xp).view(b,c,-1)
16 Vn = conv_vn(xn).view(b,c,-1)
17

18 Kp = Vp.permute(0,2,1)
19 Kn = Vn.permute(0,2,1)
20

21 # (3) calculate attention scores
22 A_n2p = torch.bmm(Qp, Kn) * scale_factor
23 A_p2n = torch.bmm(Qn, Kp) * scale_factor
24

25 # (4) information propagation
26 x_n2p = torch.bmm(torch.softmax(A_n2p,dim=-1)

, Vn).view(b,c,h,w)
27 x_p2n = torch.bmm(torch.softmax(A_p2n,dim=-1)

, Vp).view(b,c,h,w)
28

29 # (5) gated information fusion
30 wp = torch.sigmoid(conv_wp1(xp_) + conv_wp2(

x_n2p))
31 xp = wp*xp_ + (1-wp)*x_n2p
32 wn = torch.sigmoid(conv_wn1(xn_) + conv_wn2(

x_p2n))
33 xn = wn*xn_ + (1-wn)*x_p2n
34

35 # (6) update xint
36 xint = conv_int(torch.cat([Qp.view(b,c,h,w),

Qn.view(b,c,h,w)], dim=1)) + xint
37

38 return xp, xn, xint
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LR − i, i = 1, 2. As shown in Figure 1, the introduction
of CIR in the BIE enables our model to more effectively
capture contextual information from different events in pre-
vious frames and utilize information that does not exist in
the current frame, thereby enhancing the performance.
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Figure 1. Qualitative comparison between BIE equipped with and
without CIR.

C.2. Hyperparameters of Architecture

We conducted experiments to explore the impact of hyper-
parameters on the super-resolution results of the BMCNET,
specifically focusing on two aspects: 1) ablation of layers in
the residual network module, and 2) ablation of the channel
size in feature extraction. To investigate the influence of
model hyperparameters on the super-resolution outcomes,
we modified the model parameters and retrained them on
the NFS-syn dataset. The 4× SR results on both the NFS-
syn dataset are presented in Tab. 1. Additionally, we report
their model parameters and FLOPs for model and time com-
plexity analysis. The results show that adjusting the number
of layers has a minor impact on the performance of BMC-
NET, but it significantly reduces FLOPs. On the other hand,
reducing the channel size substantially decreases the pa-
rameter count while significantly affecting the performance.
After considering the trade-off between efficiency and ef-
fectiveness, we have set C=128 and N=5 in practice.
Effectiveness of The Number of Global Structures in
BIE. To investigate the effect of the number of global struc-
tures M in BIE, we conduct a series experiments by setting
different M . The channel C=128, resolution (H,W ) of LR
events is (80, 45), and the scale S=4. The results are present
in Tab. 2. In practice, we set M=128 from the consideration
of the trade-off between efficiency and performance.

(C, N ) NFS-syn # Params # FLOPs

(32, 5) 0.598 0.2 M 2.2 G
(64, 5) 0.571 0.7 M 8.9 G
(128, 5) 0.552 2.7 M 35.7 G
(256, 5) 0.553 10.6 M 141.7 G
(128, 3) 0.554 2.5 M 22.9 G
(128, 10) 0.547 3.2 M 66.3 G

Table 1. The effect of channel C and the number of basic blocks
N in BMCNET. The FLOPs is calculated on the LR events of
NFS-syn dataset with resolutions of 80×45.

Methods NFS-syn # Params # FLOPs

M=8 0.581 335.6 K 1.19 G
M=16 0.580 342.8 K 1.21 G
M=32 0.578 357.2 K 1.24 G
M=64 0.579 385.9 K 1.30 G
M=128 0.577 443.5 K 1.42 G
M=256 0.576 558.5 K 1.50 G
M=512 0.574 778.7 K 2.13 G

Table 2. The effect of the number of global structures in BIE.
The experiments are conducted on NFS-syn dataset for 4× SR on
RMSE metrics

C.3. The Generalization in Real Event Dataset

To validate the generalization of our models, we applied
the models trained on the synthetic dataset NFS-syn to per-
form super-resolution on the real dataset EventNFS [1].
From Tab. 3, it can be observed that although our meth-
ods BMCNET-plain and BMCNET still outperform other
approaches, this advantage is somewhat diminished. There
could be two reasons for this. First, the minimum resolution
of EventNFS is 55×31, which is too small, causing signifi-
cant degradation of event information and hindering the ef-
fective recovery of high-resolution event streams. Second,
differences between real and synthetic event streams may
result in a weakened performance of the model. Investigat-
ing methods to mitigate the impact of differences between
real and synthetic event streams is an important direction
for our future research.

D. More Visual Results

D.1. More Qualitative Comparison Results

In Figure 2, Figure 3, and Figure 4, we present the 4×
super-resolution results on the NFS-syn, RGB-syn, and
EventNFS-real datasets for bicubic, SRFBN [5], RLSP [2],
RSTT [3], EventZoom [1], RecEvSR [9], and our methods
BMCNET-plain and BMCNET. The low-resolution (LR)
resolutions for NFS-syn, RGB-syn, and EventNFS-real are



Methods
EventNFS-real*

2× 4×

bicubic 0.872 0.948
SRFBN [5] 0.837 0.901
RLSP [2] 0.837 0.917
RSTT [3] 0.812 0.887
EventZoom [1] 1.043 1.117
RecEvSR [9] 0.822 0.897
BMCNet-plain 0.804 0.869
BMCNet 0.792 0.877

Table 3. Quantitative analysis results for super-resolution on
EventNFS-real dataset using bicubic, SRFBN [5], RLSP [2],
RSTT [3], EventZoom [1], RecEvSR [9], and our methods BMC-
NET-plain and BMCNET. * denotes that all models are trained on
the synthetic dataset NFS-syn and then applied to super-resolution
on the real dataset EventNFS-real. We report RMSE results for
each super-resolution scale.

80 × 45, 190 × 180, and 55 × 31, respectively. It is evi-
dent from the results that our BMCNET-plain and BMC-
NET excel in integrating overall structural information to
complement and rectify detailed information, resulting in
richer details and clearer edges.

D.2. Event-Based Video Reconstruction

As shown in Figure 5, we applied bicubic, SRFBN [5],
RLSP [2], RSTT [3], EventZoom [1], RecEvSR [9], and
our methods BMCNET-plain and BMCNET to perform
4× super-resolution on the downsampled NFS-syn dataset.
Subsequently, we utilized the E2VID [7] to reconstruct
the events based on the super-resolved event stream. It is
evident that our methods BMCNET-plain and BMCNET
achieve superior reconstruction with finer details and fewer
artifacts, validating the effectiveness of our approach.
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Figure 2. Super-Resolution Results at 4× Scale on the NFS-syn Dataset for bicubic, SRFBN [5], RLSP [2], RSTT [3], EventZoom [1],
RecEvSR [9], and our methods BMCNET-plain and BMCNET. [Best viewed with zoom-in.]



Figure 3. Super-Resolution Results at 4× Scale on the RGB-syn Dataset for bicubic, SRFBN [5], RLSP [2], RSTT [3], EventZoom [1],
RecEvSR [9], and our methods BMCNET-plain and BMCNET. [Best viewed with zoom-in.]
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Figure 4. Super-Resolution Results at 4× Scale on the EventNFS-real Dataset for bicubic, SRFBN [5], RLSP [2], RSTT [3], EventZoom
[1], RecEvSR [9], and our methods BMCNET-plain and BMCNET. [Best viewed with zoom-in.]



bicubic SRFBN RLSP RSTT

EventZoom RecEvSR BMCNet-plain BMCNet

L
R

H
R

F
ra
m
e

bicubic SRFBN RLSP RSTT

EventZoom RecEvSR BMCNet-plain BMCNet

L
R

H
R

F
ra
m
e

bicubic SRFBN RLSP RSTT

EventZoom RecEvSR BMCNet-plain BMCNet

L
R

H
R

F
ra
m
e

bicubic SRFBN RLSP RSTT

EventZoom RecEvSR BMCNet-plain BMCNet

L
R

H
R

F
ra
m
e

Figure 5. Qualitative analysis results for event-based video reconstruction comparing bicubic, SRFBN [5], RLSP [2], RSTT [3], Event-
Zoom [1], RecEvSR [9], and our methods BMCNET-plain and BMCNET. The results showcase the performance of all methods in 4×
super-resolution on the NFS-syn dataset. [Best viewed with zoom-in.]
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