
CausalPC: Improving the Robustness of Point Cloud Classification by
Causal Effect Identification

Supplementary Material

A. Proof of the Causal Effect Identification

We detail the proof of Theorem 1 as follows.

Theorem 1. Under the causal graph in Fig.2 (a), suppose
the real-world object of a point cloud data x is o. The causal
effect is transformed into the following equation:

P (Y |do(X = x)) = P (Y |do(X = x,O = o))

=

∫
P (Z|x)

[∫
P (Y |Z,X)P (X|o)dX

]
dZ.

(5)

Proof. Firstly, we start with the following transformation:

P (Y |do(X = x,O = o)) = P (Y |do(X = x))

=

∫
P (Y |Z,U)P (Z|x)P (U)dUdZ

=

∫
P (Z|x)

[∫
P (Y |Z,U)P (U)dU

]
dZ (6)

According to the data generation process defined by the
causal graph, when we observe a specific value of x, the
information of o is inherently captured in the causal effect
with do(X = x). Therefore, we have the causal effect
P (Y |do(X = x,O = o)) be equivalent to P (Y |do(X =
x)). Formally, the intervention do(X = x,O = o) sets
P (x|o) = 1 and P (o) = 1, which eliminates the terms re-
lated to o in the equation.

However, there remains a critical challenge in identify-
ing the causal effect in Eq.6, i.e., the estimation of the term∫
P (Y |Z,U)P (U)dU . Note that the aforementioned esti-

mation involves the explicit modeling of the unobservable
U . Moreover, we have:

P (Y |Z) ̸=
∫

P (Y |Z,U)P (U)dU, (7)

because the variable Z also contains the information of U
through the path U → X → Z. This prevents us from
estimating the marginal probability P (Y |Z) directly for∫
P (Y |Z,U)P (U)dU [29, 38, 53, 54, 65].
To address this term, we first have P (U |Z,X) =

P (U |X) because variable X blocks the influence between
Z and U [29]. Similarly, we have P (Y |X,Z,U) =
P (Y |Z,U) for any X , and P (U |X,O) = P (U |X) for any
O. Based on these, we derive the following equation under

the intervention do(O) = o,∫
P (Y |Z,U)P (U)dU

=

∫
P (Y |Z,U)P (U |X)P (X|do(O) = o)dXdU

=

∫
P (Y |Z,U)P (U |X)P (X|o)dXdU

=

∫
P (Y |X,Z,U)P (U |X,Z)P (X|o)dXdU

=

∫
P (X|o)

[∫
P (Y |X,Z,U)P (U |X,Z)dU

]
dX

=

∫
P (X|o)

[∫
P (Y, U |X,Z)dU

]
dX

=

∫
P (X|o)P (Y |X,Z)dX (8)

By replacing the term
∫
P (Y |Z,U)P (U)dU in Eq.6 by∫

P (X|o)P (Y |X,Z)dX , we have:

P (Y |do(X = x)) =

∫
P (Z|x)

[∫
P (X|o)P (Y |X,Z)dX

]
dZ

(9)
which proves the validity of Theorem 1.

B. Implementation Details

B.1. The Proposed CausalPC

We further present the implementation details of our pro-
posed CausalPC.

CausalPC can be roughly divided into the structure ex-
traction module, the point cloud reconstruction module, and
the joint attention classification module, which are dedi-
cated to modeling P (Z|x), P (X|o), and P (Y |Z,X), re-
spectively. For the structure extraction module, we sample
512 points for each point cloud as its structural informa-
tion. For the point cloud reconstruction module, we lever-
age the generative network PU-Net gϕ [56] used in P (X|o)
is trained to up-sample a point cloud from 2048 points to
4096 points. We down-sample each dense point cloud to
2048 points as x P (X|o). We further draw noise from a
uniform distribution U(−1, 1) to simulate sampling noise.
For the joint attention classification module, we adapt the
single-head attention implementation used in [41], where
learnable parameter matrices are first multiplied with the
query, key, and value features before the attention score
computation. The dimension of the transformed features

for attention computation is set to be 256. After attention-
based aggregation, the global features hatt

z and hatt
x are first

concatenated and fused by a linear layer. Then, the resulting
feature is further fused with hzx to achieve the overall point
cloud feature h for classification, whose dimension aligns
with the one used for the vanilla classifiers.

To mitigate the impact of extreme outliers within an ob-
served point cloud, we incorporate the SOR algorithm as a
pre-processing step before conducting causal effect identi-
fication. For the sampling times used in the structure ex-
traction module and the point cloud reconstruction module,
we set the hyperparameters Mx = 10 and Mz = 10. We
finetune the attention module and the linear layers in the
vanilla classifier for 10 epochs on the normal train set of
each dataset with the learning rate set as 0.001. For other
hyperparameters related to the network structure and train-
ing process of PU-Net and existing point cloud classifiers
[19, 32, 45], we follow the specifications provided in the
respective original works.

B.2. Experimental Settings

We further detail the background and the hyper-parameter
settings of the baseline attack and defense strategies we
used in our paper.
Attack Methods. We briefly summarize the attack meth-
ods involved in our work. Ten attack methods are consid-
ered in this paper, including Minimal [15], Smooth [25],
IFGM [21], Gen3D-Add [51], Gen3D-Pert [51], AdvPC
[11], Drop [62], KNN [40], GeoA3 [46], and ShapeInvari-
ant (SI) [12]. Specifically, Minimal proposes to exploit the
L1 constraint to approximate the L0 constraint, which tends
to reduce the number of perturbed points. IFGM exploits
normalized gradients to generate perturbations instead of
the product of the sign of gradients and a perturbation clip
threshold originally used in FGSM [9]. Smooth attempts
to obtain more robust gradients by adding random noises
to a point cloud before generating perturbations based on
IFGM and averaging them. Gen3D-Pert and Gen3D-Add
stand for the perturbation and adding attacks proposed in
the original work, where Gen3D-Pert imposes small pertur-
bations on all points of a point cloud under the constraint of
L2 distance, while Gen3D-Add imposes the perturbations
on a copy of a separate subset of points from the input point
cloud, considered as the added points, under the constraint
of Chamfer distance. AdvPC generates an adversarial point
cloud given the benign one with an autoencoder trained for
a dataset with the L2 distance constraint. Drop attack se-
lects the most important set of points that influences the
final extracted feature for a point cloud and deletes them.
KNN is another perturbation attack with an additional k-NN
distance constraint other than Chamfer distance and addi-
tional clip operations based on L∞ norms and normal vec-
tors. GeoA3 takes Chamfer distance, Hausdorff distance

and local curvature loss into account when performing a
perturbation attack. SI uses specific designs to restrict the
direction of perturbations on points. The optimization of
the perturbations concerning all the attacks above is based
on the C&W attack [3] except for IFGM and Smooth.

We provide the hyper-parameter settings for the attacks
as follows for potential reproduction needs. For all attacks,
we first apply the settings from the original works if pro-
vided and then tune them for better attack performance on
a small validation set. For Minimal, we set the attack step
size as 0.02, the number of iterations as 20 for ModelNet40
and 45 for ShapeNet, and the perturbation clip threshold ϵ
as 0.5. For Smooth, we set the attack step size as 0.02, the
number of iterations as 100, the clip threshold as 0.5, and
the random noise are sampled from a Uniform distribution
U[0,0.1], the number of iterations for searching robust gradi-
ents is 15. For IFGM, we set the attack step size as 0.02, the
number of iterations as 100, and the clip threshold ϵ as 0.5.
For Gen3D-Pert, we set the attack step size as 0.001, the
number of iterations as 200, and the distance loss weight as
0.1. For Gen3D-Add, we set the number of points added as
256, the attack step size as 0.001, the number of iterations
as 400, and the distance loss weight as 400.0. For AdvPC,
we set the number of iterations as 100, and the distance con-
straint weight as 0.1. For Drop, we set the total number of
points to delete as 200, and the number of iterations as 20.
For KNN, we set the attack step size as 0.001, the number of
iterations as 400, the κ used in the C&W attack as 5.0, the
Chamfer distance weight as 10.0, the k-NN distance weight
as 0.5, and the clip threshold is 0.8. For GeoA3, we set the
max binary search steps of attack step size as 10, the number
of iterations as 300, and the weights of Chamfer distance,
Hausdorff distance, and curvature loss are 10.0, 0.1, 1.0,
respectively. For SI, we set the attack step size as 0.07, the
number of iterations as 50, and the clip threshold as 0.16.
All the attacks are performed with the settings above unless
otherwise specified.
Defense Methods. We consider three input-oriented meth-
ods, i.e., SOR [36], DUP-Net [63], and GvG [7], as our
defense baselines. SOR computes the k-NN distance for
each point in a point cloud and removes those points with
distances larger than µ + α · σ, where µ and σ denote the
mean and standard deviation of the distances. DUP-Net fur-
ther utilizes an up-sampling network [55] to enhance the
visual quality of a point cloud after SOR. For the hyper-
parameters, we set k as 2 and α as 1.1 as described in the
original work. GvG leverages the predicted gather vector
for each point to recover the perturbed prediction. We ap-
ply GvG to PointNet only due to its model-specific design.

We also consider two adversarial training-based meth-
ods: Adversarial training (AT) [25] and PAGN [20]. For AT,
we combined adversarial examples generated by the IFGM
attack with benign samples for fine-tuning the vanilla clas-

Table 4. Mean test accuracy on ModelNet40 and ShapeNet.

PointNet DGCNN PointCNN

ModelNet40 Vanilla 86.2% 88.9% 89.6%
Ours 86.9% 87.3% 87.1%

ShapeNet Vanilla 78.6% 80.5% 77.9%
Ours 73.4% 77.1% 71.7%

sification model.
While we take these methods to compare the defense

performance of our proposed framework, we would like to
point out that our framework integrates a sampling strategy,
a reconstruction module, and an attention module on ex-
isting classifiers, which is compatible with all the existing
recovery-based defense methods, e.g., one can first utilize
recovery methods to restore an adversarial example before
inputting it into our model to further boost the robustness.
More Details. We first describe the design of the random
targeted attack in the main body in detail. For each sample,
we randomly assign a label other than the ground truth label
as the target label and maximize the model’s prediction of
this label. For attack methods that are originally designed
for performing untargeted attacks, e.g., IFGM and Minimal,
we alter their classification loss to a targeted one, i.e., from
maximizing the loss against the ground truth label to min-
imizing the loss against the target label. Further, we may
follow the design in the C&W-based attack [3] and use the
margin logit loss.

Under such a design of targeted attacks, the computation
of the attack success rate (ASR) is defined as,

ASR =
1

Ntest

∑
X̃

I(fθ(X̃), ỹ) (10)

where ỹ is the target label for each X̃ in the test set, Ntest
is the size of the testing set and I(·, ·) is the indicator func-
tion, where I = 1 if the model predicts the target label ỹ
and otherwise 0. A lower ASR indicates better adversarial
robustness.

As for the untargeted attack, the attack is set to aim at
misleading the prediction of the model without any desig-
nated label, i.e., causing the model to predict any label other
than the ground truth one. Therefore, we utilize classifi-
cation accuracy to measure the effectiveness of an attack,
where a higher accuracy indicates better adversarial robust-
ness. Specifically, we take IFGM, Minimal, Gen3D-Pert,
and Drop as representative attacks for the corresponding ex-
periments.

For the implementation of the classification models and
baseline methods, we directly apply those with released Py-
Torch implementations. For those without source code re-
leased or with TensorFlow implementations only, we im-
plement them according to their work. We trained all the

128 256 512
of added points

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

Gen3D-Add

0.1 0.5 1.0
k-NN weight

0.0

0.2

0.4

0.6

0.8

1.0 KNN
Vanilla
SOR
Ours

Figure 6. The influence of the attack hyper-parameters on the ad-
versarial robustness. (Left: Gen3D-Add, Right: KNN)

models ourselves including those used for classification and
those for defense baselines.

All the attacks and defenses are performed on the test set
of both datasets. Specifically, for time efficiency, we per-
form GeoA3 [46] attack only on a subset with 800 samples
consisting of 20 samples from each of the 40 classes from
ModelNet40. Note that in the original work, the authors
sampled a subset of 250 pairs of samples and target labels
in their experiments as well. We believe that our sampling
strategy can provide us with a subset of samples represen-
tative enough.

All the experiments are conducted on a machine with a
32-core CPU, 128 GBs of memory, and 2 NVIDIA 2080Ti
GPUs.

C. More Empirical Results
C.1. Normal Utility and Robustness of CausalPC

We first evaluate the classification accuracy of vanilla clas-
sifiers combined with CausalPC and summarize the results
on two datasets in Table 4. The results state that the pro-
posed CausalPC could achieve robustness against adversar-
ial attacks without much loss of normal utility. Note that ex-
isting defenses, whether adversarial training-based or input-
oriented, typically incur some degree of damage to the nor-
mal utility of the model. Certain randomized defense strate-
gies exhibit a nearly 10% decrease in test set accuracy [23].

We further present the performance comparison of
CausalPC with baseline defenses on ShapeNet in Table 5
and 6. The results show consistent performance with Table
1 and 2 in Section 5, where the proposed CausalPC substan-
tially outperforms other defenses in various settings against
different types of attacks.

C.2. Influences of Attack Intensities

To evaluate the adversarial robustness of point cloud clas-
sifiers with our CausalPC under various attack intensities,
we adjust the hyper-parameters of specific attack methods
to explore the resulting ASR. Specifically, we pick Gen3D-
Add and KNN as the representatives of normal and shape-
invariant attacks and perform them on PointNet with Mod-

Table 5. Classification accuracy (%) of untargeted attack strategies against different defense methods on ShapeNet dataset. The best among
all defenses is in bold.

PointNet DGCNN PointCNN
Vanilla SOR DUP-Net GvG AT PAGN Ours Vanilla SOR DUP-Net AT PAGN Ours Vanilla SOR DUP-Net AT PAGN Ours

IFGM 0.3 37.1 23.9 0.3 23.7 32.0 57.5 0.0 31.3 46.9 25.5 14.8 65.4 43.2 66.1 51.3 22.4 55.5 66.1
Minimal 26.6 51.2 51.1 26.8 42.9 59.3 60.1 23.2 48.9 53.9 43.6 49.3 67.7 62.8 63.6 54.8 22.8 60.9 61.8

Gen3D-Pert 40.8 40.3 40.3 40.8 36.9 41.4 64.6 18.5 20.2 37.1 11.7 24.7 32.6 43.0 44.1 42.7 16.1 39.5 44.9
Drop 57.4 64.2 10.0 52.9 24.5 63.6 59.7 68.3 76.7 4.1 37.9 70.4 74.1 75.1 71.3 9.5 43.8 66.1 70.5
Avg. 31.3 48.2 31.3 30.2 32.0 49.1 60.5 27.5 44.3 35.5 29.7 39.8 59.9 56.0 61.3 39.6 26.3 55.5 60.8

Table 6. Attack success rates (%) of targeted attack strategies against different defense methods on ShapeNet dataset. The best among all
defenses is in bold.

PointNet DGCNN PointCNN
Vanilla SOR DUP-Net GvG AT PAGN Ours Vanilla SOR DUP-Net AT PAGN Ours Vanilla SOR DUP-Net AT PAGN Ours

Minimal 29.6 6.0 5.6 12.0 6.7 2.8 2.2 8.6 1.8 1.0 2.4 2.1 0.7 0.5 0.6 0.7 0.9 0.9 0.8
Smooth 15.6 5.0 5.1 40.3 30.1 3.8 1.7 6.8 2.1 1.7 62.3 11.5 0.9 1.1 0.7 1.2 2.6 1.1 0.8
IFGM 61.2 4.1 3.2 54.1 57.6 2.2 0.9 85.4 1.4 0.6 95.0 1.0 0.4 2.8 1.4 1.7 3.7 1.5 1.4

Gen3D-Add 41.8 4.5 4.3 32.8 34.5 2.8 1.2 13.1 1.5 1.1 10.5 2.5 0.6 0.7 0.6 1.1 1.3 0.7 0.9
Gen3D-Pert 97.2 5.3 4.0 50.9 62.2 2.5 0.9 87.4 3.8 1.3 84.0 2.2 0.4 13.9 6.9 3.0 3.4 2.2 3.0

AdvPC 99.4 4.0 1.5 96.6 99.4 3.5 1.6 61.8 2.9 1.7 58.7 2.4 0.7 4.0 2.6 1.6 1.6 2.2 2.6
KNN 80.9 29.2 24.7 87.8 92.0 23.0 3.7 94.1 19.6 1.3 94.1 12.4 1.6 23.9 12.6 4.8 14.9 9.2 7.7

ShapeInvariant 48.6 5.2 2.2 47.8 45.0 5.0 1.7 8.3 2.1 1.6 4.2 2.6 1.1 3.3 3.0 1.9 1.9 1.9 1.2
Avg. 59.3 7.9 6.3 52.8 53.4 5.7 1.7 45.7 4.4 1.3 51.4 4.6 0.8 6.3 3.6 2.0 3.8 2.5 2.3

elNet40. For Gen3D-Add, we adjust the number of added
points to be 128, 256, 512, while for KNN, we adjust the
weight of the k-NN distance loss to be 0.1, 0.5, 1.0. The
ASR of the vanilla PointNet, PointNet with SOR, and Point-
Net with CausalPC is demonstrated in Fig.6.

As is shown in the left subplot, for Gen3D-Add, the ASR
of vanilla PointNet rises as the number of points added
increases, while the one of PointNet with SOR defense
slightly decreases, which indicates that for normal attacks, a
stronger attack setting may reduce the stealthiness of the at-
tack, resulting in the success of input-oriented defenses. As
for KNN, the ASR of the vanilla classifier plateaus while
decreasing the distance loss weight (, which in turn brings
a stronger attack). In the meantime, the ASR of SOR de-
fense slightly increases, which means that a tighter restric-
tion of shape-invariant attacks produces more stealthy ad-
versarial examples when the ASR saturates. For both types
of attacks, the classifier with our CausalPC keeps the lowest
ASR consistently, which further validates the adversarial ro-
bustness brought by the causal inference of the point cloud
classification under various attack strengths.

C.3. Visualization of the Overall Framework

To gain an intuitive understanding of the source of adversar-
ial robustness in our CausalPC, we visualize the generated
z∗ and x′

∗ in Fig.7. We randomly select an adversarial ex-
ample produced by the GeoA3 attack on PointNet for the
ModelNet40 dataset. The ground truth label of the example
is chair, and the target label is plant. For simplicity, we only
demonstrate the most representative 4 of the 10 generated z∗
and x′

∗. In the visualization, the first row/column represents
x′
∗ / z∗ individually, while the other positions display the

concatenated sample for prediction. The title of each point
cloud summarizes the top three predicted classes and their
corresponding confidence.

This visualization offers a comprehensive understanding
of the intuition behind our CausalPC. Firstly, it provides
additional examples showcasing how the structural infor-
mation extraction module and point cloud reconstruction
module effectively capture the relevant information within
a point cloud. Specifically, the column of z∗ preserves the
key structure of the chair, while the row of x′

∗ offers more
detailed information. Secondly, the prediction results for
each combined sample demonstrate that even if some of the
generated x′

∗ or z∗ still contain local adversarial patterns
that could mislead the model’s prediction, e.g., the X3 col-
umn, the overall adversarial robustness is ensured through
the aggregation of predictions.

D. More Discussion

D.1. Certified Defenses

Another line of work that seems similar to our work is certi-
fied defenses [6, 18], which share the motivation of defend-
ing against various potential noises with our work. Certified
defenses for point cloud classification focus on defending
against natural noises like 3D transformations [5, 28, 30]
and adversarial noises [23, 60]. Though providing a theo-
retical robustness certification, the randomized smoothing
strategy [6] they use has also brought their limitations. To
satisfy the requirements of certified robustness, these ap-
proaches not only need to sample numerous point clouds for
inference (10, 000 times of inference for one point cloud),
but also need to retrain the original classification model,

e.g., for classifying point clouds of only 16 points each [23].
Such a mechanism limits the availability of these methods
to various kinds of classification models. In comparison,
our CausalPC is a model-agnostic solution free of retrain-
ing the whole model. Moreover, our framework based on
the causal framework requires significantly fewer samples
during inference (100 times in total).

D.2. Adaptive Attacks

As a defense method, it is suggested to consider potential
attacks when an attacker knows about the defense proce-
dure. To perform an adaptive attack against CausalPC, the
main challenge is to acquire the accurate gradient. Since
CausalPC involves multiple randomization operations with
up- and sub-sampling strategies, it becomes hard for an at-
tacker to estimate the actual gradient that contributes to the
final classification for each point within a sample. More-
over, both point-wise samplings (FPS, random) and sample-
wise samplings (Eq.4 in the paper) themselves are the
source of robustness. Only drastic changes in an attack can
survive the samplings, which violates the imperceptibility
requirement.

However, it is still possible for anyone to put the whole
inference process of CausalPC together and perform back-
propagation. Due to the 100 times of classification involved
in one inference, such a backpropagation has a huge compu-
tational overhead for our experimental resource. Therefore,
we briefly discuss this potential instead of evaluating it.

X1 X2 X3 X4

Z1

Z2

Z3

Z4

cls:['chair', 'plant', 'piano']
prob:[0.864, 0.121, 0.006]

cls:['chair', 'plant', 'piano']
prob:[0.799, 0.191, 0.008]

cls:['plant', 'chair', 'piano']
prob:[0.558, 0.388, 0.045]

cls:['chair', 'plant', 'piano']
prob:[0.666, 0.298, 0.028]

cls:['chair', 'plant', 'bookshelf']
prob:[0.76, 0.234, 0.002]

cls:['chair', 'plant', 'piano']
prob:[0.726, 0.259, 0.013]

cls:['plant', 'chair', 'piano']
prob:[0.79, 0.196, 0.011]

cls:['plant', 'chair', 'piano']
prob:[0.768, 0.22, 0.007]

cls:['chair', 'plant', 'piano']
prob:[0.928, 0.058, 0.007]

cls:['chair', 'plant', 'piano']
prob:[0.841, 0.15, 0.006]

cls:['plant', 'chair', 'piano']
prob:[0.529, 0.414, 0.045]

cls:['chair', 'plant', 'piano']
prob:[0.724, 0.249, 0.018]

cls:['chair', 'plant', 'piano']
prob:[0.85, 0.142, 0.004]

cls:['chair', 'plant', 'piano']
prob:[0.843, 0.149, 0.006]

cls:['plant', 'chair', 'piano']
prob:[0.733, 0.249, 0.014]

cls:['plant', 'chair', 'piano']
prob:[0.552, 0.436, 0.007]

Figure 7. Visualization of the extracted z∗ and the reconstructed x′
∗ and the concatenated samples for an observed x. Each row/column of

samples shares the same z∗ / x′
∗. Samples with red titles are misclassified.

	. Introduction
	. Preliminary and Related Work
	. Point Cloud Classification
	. Adversarial Examples
	. Causal Inference

	. The Causal Modeling
	. Causal Modeling of Point Cloud Classification
	. Flaws of Existing Models and Defenses

	. The Proposed CausalPC
	. Causal Effect Identification
	. Causal Inference
	. Summary

	. Experiments
	. Experimental Settings
	. The Robustness of the Proposed Framework
	. Ablation Study
	. Visualization

	. Conclusion & Limitations
	. Proof of the Causal Effect Identification
	. Implementation Details
	. The Proposed CausalPC
	. Experimental Settings

	. More Empirical Results
	. Normal Utility and Robustness of CausalPC
	. Influences of Attack Intensities
	. Visualization of the Overall Framework

	. More Discussion
	. Certified Defenses
	. Adaptive Attacks

