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In the supplementary material, we first provide the de-
tails of VQ-VAE, motion representation, and training pro-
cedures to help the reproduction of the experimental results.
More comparisons, analyses, and qualitative experiments
are also conducted to further demonstrate the superiority of
the proposed method. Finally, we show some failure cases
to illustrate the limitations of the current method. We also
provide a supplementary video for this work.

1. VQ-VAE

A naive training of VQ-VAE suffers from codebook col-
lapse [3]. To avoid the limitation, we adopt exponential
moving average (EMA) and codebook reset (Code Reset)
to improve the codebook utilization. Specifically, EMA up-
dates the codebook smoothly: Ct ← λCt−1 + (1 − λ)Ct,
and Ct is the codebook in the current iteration. λ = 0.99 is
a exponential moving constant. Code Reset finds inactivate
codes during the training and reassigns them according to
input data.

For the model architecture, the encoder of the discrete
interaction prior consists of a motion embedding layer, a po-
sitional encoding layer, and 4 transformer blocks. The de-
coder has a motion decoding layer and 4 transformer blocks.
Each codebook has a size of 256 × 256.

2. Motion representation

Previous works [7] always represent human motion in a
canonical space, and the global rotation and translation are
obtained by accumulating local angular and linear veloci-
ties. This representation cannot be directly applied to multi-
person scenarios since it does not maintain the person-to-
person spatial relationships. To address this problem, we
use the root position of character a in the first frame as ori-
gin and transform the interactive motions to the new coor-
dinate. Consequently, the joint positions and velocities are
kept in the world frame. In addition, the two-person in-
teractions satisfy commutative property, which means the

Dataset w/o proj. loss Ours
3DPW 73.8 70.6
Hi4D 64.2 63.1

Table 1. Ablation on projection loss gradients. “w/o proj. loss”
denotes our model without the projection loss gradients. The num-
ber are MPJPE.

Method Accel↓ A-PD↓
GroupRec 25.2 1.34

Ours 10.7 1.15
Table 2. Accel and A-PD are acceleration error and average pene-
tration depth, respectively.

Timesteps step=1 step=3 step=5 step=10
MPJPE 68.2 64.4 63.1 63.0

Table 3. Ablation on number of duffusion timesteps. The abla-
tion is conducted on Hi4D.

interaction
{
xa,xb

}
and

{
xb,xa

}
are equivalent.

3. Implementation details

The diffusion model has the same stracuture as the VQ-
VAE encoder, which contains a motion embedding layer,
a positional encoding layer, and 4 transformer blocks. The
number of diffusion timesteps is set to 100 during the train-
ing stage. In the inference, we adopt DDIM sampling strat-
egy [5] with 5 timesteps to achieve the distribution adaption.
For the projection loss gradients, we use ViT pose [6] to pre-
dict 2D poses. To train the diffusion model, 25% of projec-
tion loss gradients and image features are randomly masked.
The frame length of interactive motions is 16, and the batch
size for VQ-VAE and diffusion model are 256 and 32, re-
spectively. All the models are trained with AdamW [2] op-
timizer using a learning rate of 1e-4 on a single GPU of
NVIDIA GeForce RTX 4090.
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Figure 1. Comparison between the models with and without the guidance. Without the guidance, the reverse diffusion process has limited
effect in improving the interations.

4. Extended experiments

Projection loss gradients. We also investigate the pro-
jection loss gradients, which provide signals to guide the
reverse diffusion process and enforce the 3D models to
be consistent with image observations. The term can im-
prove joint accuracy for common scenarios. However, it has
limited effect on severely occluded cases since the current
state-of-the-art 2D pose detectors cannot produce reliable
results for ambiguous images. In Tab. 1, Hi4d has more
complex interactions than 3DPW, and the performance on
3DPW dataset significantly decreases without the projec-
tion loss gradients.

Diffusion guidance. In Fig. 1, we show the intermediate
results in each timestep during the inference phase. The in-

ference contains 5 timesteps with the denoising diffusion
implicit models [5]. Although the reverse diffusion has
the same timesteps, we find that the denoising model with-
out the guidance produces slight changes and the final re-
sults still show severe penetrations. In contrast, our model
can refine the interactions and alleviate penetrations, which
demonstrates the importance of proposed guidance.
Diffusion timesteps. We analyze the impact of different
timesteps in Tab. 3. The performance increases with more
timesteps at first and then becomes stable. To balance the
accuracy and efficiency, we use 5 timesteps in the inference
phase.
Penetration and acceleration error. In Tab. 2, we further
use the average penetration depth (A-PD) [4], which reflects
the degrees of inter-penetration, to evaluate the body contact
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Figure 2. More qualitative results on Hi4D, 3DPW and CHI3D datasets. Our method can reconstruct closely interactive humans with
plausible body poses, natural proxemic relationships and accurate physical contacts from single-view inputs

and penetration, and our method can produce better perfor-
mance. Our method also outperforms GroupRec [1] on the
acceleration error due to the proposed velocity loss and tem-
poral architecture.
More results. We also show more qualitative results in
Fig. 2. Our method can reconstruct closely interactive hu-
mans with plausible body poses, natural proxemic relation-
ships and accurate physical contacts from single-view in-
puts.
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