
DreamControl: Control-Based Text-to-3D Generation with 3D Self-Prior

Supplementary Material

In this supplementary, we provide more information on
our implementation details (Section 1) and evaluation met-
rics (Section 2). To demonstrate the effectiveness of our
control-based guidance on maintaining 3D prior, we pro-
vide a comparison with a two-stage ProlificDreamer (Sec-
tion 3). For more visualization results in the format of 360◦,
please refer to the attached HTML file in results folder.

1. Implementation Details

Adaptive Viewpoint Sampling. We use a standard
DreamFusion-IF framework in the first stage, in which the
uniform viewpoint sampling is replaced with an adaptive
sampling. To model an adaptive distribution, we eval-
uate the generation confidence in different views. The
rotation angle ranges of the front view, the side view,
and the back view are [−60◦, 60◦), [−120◦,−60◦) ∪
[60◦, 120◦), [−180◦,−120◦) ∪ [120◦, 180◦), respectively.
For each view, we denoise the latent code with a set
of timesteps. Here, we set the timestep set T as
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We calculate the
average CLIP similarity of all the timesteps, and softmax
similarity scores of the three views as the view confidence.
During optimization, the distribution of viewpoint sampling
is proportional to confidence. Take generating corgi as
an example, as shown in Figure 1, we denoise 3 views
with 10 different timesteps. The generation confidences of
front-view, side-view, and back-view are 68.75%, 4.75%,
26.51%. Consequently, the final probabilities of view-
point distribution are p∗1 = 68.75%, p∗2 = 4.75%, and
p∗3 = 26.51%.
Boundary Integrity Metric. Our terminated condition in
the first stage is related to the density difference between
all valid rays and edge rays in NeRF scenes. The edge is
detected by HEDdetector [6] implemented in ControlNet.
We calculate the average density of each ray set and ter-
minate the optimization when ∆r is less than 0.1 for three
consecutive checkpoints. We set a checkpoint for every 100
iterations. We also provide an example of generating corgi
in Figure 2. As the density difference decreases, the NeRF
representation gradually forms a solid geometry.
Mesh Extraction. Our two-stage optimization can achieve
promising visual results under the representation of NeRF,
while the surfaces may exhibit severe irregularities if we ex-
port NeRF results to mesh objects for applications like ani-
mation. To obtain higher-quality 3D models for broader ap-
plications, we further refine the mesh representation based
on DMTet [4]. We employ the same ControlNet guidance
under NeRF representation to optimize the refinement of

SDF representation. Specifically, we convert NeRF into a
DMTet object and retain its texture information. We ini-
tially optimize its geometry to achieve smooth and regu-
lar surfaces. Subsequently, we optimized its texture to re-
move the noise generated during the geometry optimization.
Note that, the optimization guidance in the SDF phase is
exactly the same with the NeRF phase. The parameters of
conditional LoRA on the NeRF training are loaded before
the SDF optimization, which is frozen during the geometry
phase and unfrozen during the texture phase.

Inference Time. In the the first stage, as the optimization
is terminated automatically based on our metric, it usually
takes less than 10 minutes for the generation of 3D self-
prior. In the second stage, we optimize the generation for
15,000 iterations, which spend around 2 hours for a given
prompt input. The total inference time is basically equiva-
lent to previous text-to-3D methods like Fantasia3D [1] and
ProlificDreamer [5]. For further extracting the mesh repre-
sentation, since the color information from the NeRF phase
is already of high quality, in the SDF phase, we only need
to optimize the geometry and suppress texture noise appro-
priately. As a result, the entire process of mesh extraction is
relatively fast, taking around 30 minutes.

Pseudocode. We provide pseudocode in Algorithm 1,2
to summarize the NeRF phase and the SDF phase in our
framework, respectively.

2. Evaluation Metrics

Janus Rate. To evaluate the geometry consistency, we
count the occurrence rate of the Janus problem (JR). As
shown in Figure 3, we count generation as a Janus prob-
lem based on the following situations: (1) multi-face, multi-
hand, multi-leg, or similar issues; (2) obvious content drift;
(3) serious paper-thin generation. We calculate JR as the
number of inconsistent content out of the number of all gen-
erated objects.

Pick-Score. Pick-Score (PS) [2] is a CLIP-based scor-
ing model, which is trained with Pick-a-Pic, a large, open
dataset of text-to-image prompts and real users’ preferences
over generated images. As a result, it can exhibit superhu-
man performance on the task of predicting human prefer-
ences. In 3D evaluation, we compare multi-view rendered
images of generated objects to measure the preference. For
a given text prompt y, we render N-view images {xk

y,i}Ni=1

from the generated object of method k. The pick score ps

step: 10 step: 20 step: 30 step: 40 step: 50 step: 60 step: 70 step: 80 step: 90 step: 100

fro
nt

 v
ie

w
ba

ck
 v

ie
w

si
de

 v
ie

w

Figure 1. Visualization of generation in different view-dependent prompts. Generated corgis in the front view present a higher confidence
than the other two views.

Iter 200 Iter 300 Iter 400 Iter 500 Iter 600 Iter 700 Iter 800

R
G
B

D
en
si
ty

Δr = 0.392Δr = 0.086Δr = 0.184 Δr = 0.130 Δr = 0.071 Δr = 0.092 Δr = 0.093
Figure 2. Visualization of the change in density difference ∆r. As ∆r decreases, the NeRF representation gradually forms a solid geometry.

for y is formulated as,

ps(y) =
1

N

N∑
i=1

spick(y, [x
1
y,i, x

2
y,i, . . . , x

k
y,i]), (1)

where spick is the CLIP-based scoring function. For each
method k, the final pick score is calculated as the average
score of all the text prompts, i.e., 1

|Y |
∑

y∈Y ps(y, k).

CLIP-Score. CLIP-Score (CS) is based on the CLIP [3]
similarity. For each prompt y, we render one image from
the corresponding generated object of method k, xk

y . The
rendering viewpoint is a fixed camera pose at a 45◦ angle
of elevation and a 30◦ angle of rotation. The final score is
calculated as the average score of all the text prompts, i.e.,
1

|Y |
∑

y∈Y sCLIP(y, x
k
y). Note that, differently from Pick-

Score, we don’t evaluate the CLIP-score on multi-view im-
ages because the Janus problem could ironically increase
the CLIP similarity.

3. Two-Stage Comparison

To further demonstrate that our control-based guidance
can maintain the 3D self-prior obtained in the first stage,
we compare our second stage with two-stage Prolific-
Dreamer [5]. For the two-stage ProlificDreamer, we use the
3D self-prior in our first stage for initialization.

As shown in Figure 4, we take the prompt “A chim-
panzee dressed like Henry VIII king of England” as an ex-
ample. The final generated chimpanzee of ProlificDreamer
is quite different from its initialization, presenting multi-
ple faces and multiple hands. Although DreamControl only
uses the edge condition, our result can successfully main-
tain the geometry of the input condition. The results demon-
strate that continually optimizing a coarse shape may still
lead to overfitting issues.

Algorithm 1 DreamControl - NeRF Phase
1: Input: text prompt y
2: Load: stable diffusion v1.5 ϕsd and DeepFloyd XL-v1.0 ϕif

3: ▶ Preprocess: Viewpoint Confidence Analysis
4: y1,2,3 = y + “, front/side/back view”
5: for t = 10, 20, . . . , 100 do
6: Generate images xt

y1 , xt
y2 , xt

y3 with ϕif in the timestep t
7: end for
8: p∗1,2,3 = softmax(sCLIP(y1,2,3, [{xt

y1}, {x
t
y2}, {x

t
y3}]))

9: ▶ Stage 1: 3D Self-Prior Generation
10: initialize a NeRF scene θ
11: while Not ∆r < 0.1 for three consecutive checkpoints do
12: Sample a camera c based on p∗ and a timestep t
13: Render θ at pose c, for RGB image x = g(θ, c)
14: θ ← θ − E

[
ω(t) (ϵ̂ϕif(xt, t, y)− ϵ) ∂x

∂θ

]
15: end while
16: 3D self-prior θ̂ = θ
17: ▶ Stage 2: Control-Based Score Distillation
18: initialize a NeRF scene θ and a conditional LoRA ϕθ

19: while not converged do
20: Sample a camera c and a timestep t
21: Render θ for RGB image x and normal map xn at pose c
22: Render θ̂ and detect an edge mask x̂ at pose c
23: Update λ, weighted score Lscore(xt, x̂t, x

n
t , t) =

(ϵ̂ϕsd(xt, t, x̂t, y)− ϵ)− λ(ϵ̂θ(xt, t, x
n
t , y)− ϵ)

24: θ ← θ − E
[
ω(t)Lscore(xt, x̂t, x

n
t , t)

∂x
∂θ

]
25: ϕθ ← ϕθ −∇ϕθE

[
∥ϵ̂θ(αtxt + σtϵ, t, c, y)− ϵ∥22

]
.

26: end while
27: return the optimized NeRF representation θ

Algorithm 2 DreamControl - SDF Phase
1: Input: text prompt y
2: Load: ϕsd, ϕθ , and θ
3: ▶ Stage 1: Geometry Refinement
4: initialize a DMTet mesh from θ, parameterized by m
5: while not converged do
6: Sample a camera c and a timestep t
7: Render m for RGB image x and normal map xn at pose c
8: Render θ̂ and detect an edge mask x̂ at pose c
9: m← m− E

[
ω(t) (ϵ̂ϕsd(xt, t, y)− ϵ̂θ(xt, t, x

n
t , y))

∂x
∂m

]
10: end while
11: ▶ Stage 2: Texture Refinement
12: while not converged do
13: Sample a camera c and a timestep t
14: Render m for RGB image x and normal map xn at pose c
15: Render θ̂ and detect an edge mask x̂ at pose c
16: m← m− E

[
ω(t) (ϵ̂ϕsd(xt, t, y)− ϵ̂θ(xt, t, x

n
t , y))

∂x
∂m

]
17: ϕθ ← ϕθ −∇ϕθE

[
∥ϵ̂θ(αtxt + σtϵ, t, c, y)− ϵ∥22

]
.

18: end while
19: return the optimized SDF representation m

4. More Visualization Results
Please refer to the attached HTML file in results folder for
more visualization results in the format of 360◦ video.

0° 90° 180° 270°

(1)

(2)

(3)

Figure 3. Visualization of Janus problems. (1) multi-face, multi-
hand, multi-leg, or similar issues; (2) obvious content drift; (3)
serious paper-thin generation.

RG
B
(C
on
di
tio
n)

Ed
ge
(C
on
di
tio
n)

Pr
ol
ifi
cD
re
am
er

O
ur
s

Figure 4. Visualization of two-stage generation comparison.

References
[1] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-

tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 22246–22256, 2023. 1

[2] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Ma-
tiana, Joe Penna, and Omer Levy. Pick-a-pic: An open
dataset of user preferences for text-to-image generation. arXiv
preprint arXiv:2305.01569, 2023. 1

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[4] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid representa-
tion for high-resolution 3d shape synthesis. Advances in Neu-
ral Information Processing Systems, 34:6087–6101, 2021. 1

[5] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongx-
uan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity
and diverse text-to-3d generation with variational score distil-
lation. arXiv preprint arXiv:2305.16213, 2023. 1, 2

[6] Saining ”Xie and Zhuowen” Tu. Holistically-nested edge de-
tection. In Proceedings of IEEE International Conference on
Computer Vision, 2015. 1

	. Implementation Details
	. Evaluation Metrics
	. Two-Stage Comparison
	. More Visualization Results

