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Supplementary Material

This supplementary material shows details about our
benchmark including formal definition, implementation, and
additional experiment results. Also, we show additional
details about the collection and annotation of the dataset.

S1. Additional Benchmark Details
S1.1. Cross-view association

S1.1.1 Detailed task definition

The training set consists of separate egocentric videos V ego

with associated narration T ego and exocentric videos and nar-
rations (V exo,T exo). For each egocentric video, a sequence g
with corresponding gaze is provided. Note that, we do not
provide explicit pair information in the training set.

In the validation/test set, we introduce two evaluation
settings, i.e., Ego2Exo and Exo2Ego. We describe the for-
mulation of Ego2Exo as follows. Each sample consists of
an egocentric query video V ego and K exocentric candidate
videos {V exo

1 , ..., V exo
K }, where only one candidate exocen-

tric video corresponds to the query egocentric video, i.e., the
same action is being performed. In the Exo2Ego setting, the
query is exocentric videos while egocentric videos form the
candidate set. For both Ego2Exo and Exo2Ego settings, we
consider K = 20 candidates.

S1.1.2 Implementation details

Training setting. As explicit pairing is not available in
the training set, we propose a simple baseline approach to
align egocentric videos and exocentric videos in the seman-
tic space. In specific, we train a dual-encoder architecture
consisting of a video encoder fv(·) and a text encoder ft(·)
on both ego- and exo-videos and narrations using the con-
trastive loss, named as co-training in our experiments. Fol-
lowing [17, 24], we adopt a TimeSformer-B [3] as the video
encoder and a clip [19] text encoder. We randomly sample
4 frames as input. The model is initialized with weights
pre-trained on Ego4d video and text pairs [13, 17]. We train
the dual encoder model for 5 epochs with a fixed learning
rate 1e-5 and a batch size of 32. At the inference stage, the
text encoder is discarded and only the video encoder is used.
For each query, we compute its video representation with
K features of the candidate videos and select the one with
highest cosine similarity as the model prediction.
Network architecture. To leverage the gaze information
in associating egocentric and exocentric videos, we further
propose a multi-view branch for the video encoder [23]. One
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Figure S1. Cross-view association network with naive dual archi-
tecture (a) and improved architecture with additional gaze branch
(b).

branch encodes the original video while the other branch
encodes the gaze cropped video, as illustrated in Fig. S1.
The feature of the original video cross-attends to the gazed
video feature every at the 5th, 8th, and 11th transformer block,
enabling multi-scale feature fusion for improved visual rep-
resentation. For exocentric videos, we simply input the
original video to the gaze branch.

S1.1.3 Annotation details

The process of pair construction consists of five stages: (1)
Scenario Matching. We gather all the egocentric and exo-
centric videos under the same scenario (e.g. cooking the
same dish or conducting the same experiment) into each
group. (2) Noun and Verb Matching. Based on the noun
and verb vocabularies, for each group, we pair an egocentric
caption with another if they contain exactly the same nouns
and verbs. (3) Sentence Matching with LLM. We ask the
LLM (e.g. ChatGPT) to determine whether each ego-exo
caption pair obtained in stage 2 describes the same activity
at sentence-level, reducing the linguistic ambiguity caused
by word matching. (4) Negative Sampling. We randomly
choose video clips from the same video as negative samples
in the candidate set. (5) Two-round Manual Verification. We
manually check the semantic meaning of each ego-exo pair
and corresponding ego-exo video to make sure the exact
match. This verification is performed in two rounds by two
different individuals. In total, the size of the validation/test
set is 868/2200. As stated in the main manuscript, we do not
provide such pairs for the training set and leave the modeling
of cross-view association on unpaired samples to be further
explored for the community.



S1.2. Cross-view action anticipation & planning

S1.2.1 Detailed task definition

Task definitions of cross-view action anticipation and plan-
ning have followed the previous benchmarks of [7] and [13].
Our cross-view benchmark extends on the original task set-
ting and focuses on mutual assistance between egocentric
and exocentric video data.

Action anticipation. The action anticipation task focuses on
forecasting the verb and noun categories of the subsequent
fine-level action at τ = 1 second into the future. Consid-
ering a fine-level action segment a = (s, e, c), where s, e,
and c represent the start time, end time, and category of a
respectively, the model is restricted to observing video data
only up to time s − τ . The model’s objective is to predict
the forthcoming action, encompassing relevant verbs and
nouns. The performance of the model in this benchmark is
evaluated using class-mean Top-5 recall, as outlined in [7].

Action planning. The objective of the action planning task is
to generate the next K steps of coarse-level actions. Consid-
ering Na fine-level action segments A = {ai = (si, ci)}Na

i=1,
where si (ensuring si < si+1) and ci represent the start
time and category of ai respectively, the model is limited
to observing video data up to time si and is tasked with
forecasting the K actions si, ..., si+K−1 into the future. For
evaluation purposes, we adopt ED@K as the metric, fol-
lowing the approach outlined in Ego4D LTA [13]. In our
specific configuration, we set K to 8 and sample 5 predicted
sequences for evaluation.

Cross-view benchmark. In our cross-view benchmark, we
begin by assessing zero-shot cross-view action understand-
ing. Following this, we employ various methods to leverage
information in one view to assist the understanding in the
other view. Thus, this benchmark is focused on designing
approaches that utilize both ego and exo-view data to en-
hance the cross-view performance. Figure S2 shows the
overall framework of our cross-view benchmark for action
anticipation and planning. Figure S3 further illustrates our
various cross-view settings.

S1.2.2 Implementation details

Network architecture. To adapt our cross-view training
settings, we rely on the TA3N [5] code base, acknowledged
for its clarity and comprehensibility, and widely adopted in
recent research. We employ CLIP [19] as the feature extrac-
tor for generating frame-level video features. Both action
anticipation and planning tasks entail leveraging historical
information to forecast future actions. Thus, we input a 2-
second context into the model. Within the specified temporal
range, we uniformly sample 5 frames as the input. Utiliz-
ing the 3D feature map extracted by TA3N [5], we perform
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Figure S2. Overall framework of cross-view action anticipation
and planning. The model observes the past video and tries to
anticipate the next fine-level action (action anticipation) or the next
K steps of the coarse-level actions (action planning). The model
gets assistance from the knowledge in the other view.

average pooling to condense the feature map into a vector
v ∈ Rd. We employ a projector Wanti to predict Canti

classes for the action anticipation task, where Canti is the
number of verb or noun categories. For the action planning
task, we use a projector Wplan to predict Cplan×K classes,
where Cplan is the number of coarse-level categories and K
(set to 8) is defined in Sec S1.2.1.

Training. We first introduce the training settings of both
tasks. Given the anticipation logits yanti produced by the
model and the corresponding ground truth ŷanti, we employ
the standard cross-entropy loss for supervision:

Lanti = LCE(yanti, ŷanti). (1)

For an action sequence y1plan, . . . , y
K
plan predicted by the

action planning model, the loss function is defined as:

Lplan =
1

K

K∑
i=1

LCE(y
i
plan, ŷ

i
plan). (2)

The model is trained using the SGD optimizer with a
learning rate set to 1e-2 and the training process spans 40
epochs.

Zero-shot cross-view setting. In the zero-shot cross-view
setting, the model is initially trained on data in one view
and directly tested on data in the other view. This setting is
crucial for understanding how well a model trained on data
from one perspective can adapt to and accurately interpret
data from another perspective, without any additional train-
ing specific to that new viewpoint. Figure S3(a) illustrates
the procedure of the “exo2ego” cross-view setting, where



(a) Zero-shot cross-view setting
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(b) Unsupervised domain adaption setting
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(c) Knowledge distillation setting
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Figure S3. Four settings for cross-view action anticipation and cross-view action planning. (a) The zero-shot setting directly evaluates the
model trained on one view on the test data of the other view. (b) The unsupervised domain adaptation (UDA) setting involves leveraging
data from another view, but without using the labels associated with this data. (c) In the knowledge distillation setting, for a model in one
view, a teacher model trained on the other view is used to provide assistance. (d) The co-training setting directly uses the data and labels of
both views. (a) to (d) represent 4 increasing degrees of cross-view information usage.

the model is first trained on exocentric data and then tested
on egocentric data. The “ego2exo” setting works vice versa.
Unsupervised domain adaptation setting. In the unsuper-
vised domain adaptation setting, the training process involves
using data and labels from the source view, plus the video
data from the target view. The annotations from the target
view are not used. Figure S3(b) illustrates the “exo2ego”
cross-view setting, where exocentric data serves as the source
domain, and egocentric data serves as the target domain. In
addition to task supervision, the overall loss function also
contains a domain adaption loss derived from TA3N [5] for
unsupervised domain adaptation settings:

LDA =
1

NS

NS∑
i=1

Li
y +

1

NS∪T

NS∪T∑
i=1

γLi
ae

− 1

NS∪T

NS∪T∑
i=1

(γsLi
sd + γrLi

rd + γtLi
td).

(3)

Therefore, the overall loss function for both tasks under
this setting is

L = Lanti/plan + LDA. (4)

Knowledge distillation setting. In the knowledge distil-
lation setting, the training process comprises two stages:
(1) training the teacher model on the data in one view, and
(2) training the student model on the data in the other view,
meanwhile distilling knowledge from the teacher model. Fig-
ure S3(c) depicts the “exo2ego” cross-view setting, where
the teacher model is trained on exocentric data, and the stu-
dent model is trained on egocentric data. In addition to task
supervision, the overall loss function for training the student
model also contains a knowledge distillation loss for knowl-
edge distillation settings. Specifically, we use L2 loss to
minimize the feature ySfeat and yTfeat output by the student
and teacher:

LKD = LL2(y
S
feat, y

T
feat). (5)

Therefore, the overall loss function of the teacher and
student for both tasks under this setting is

Lteacher =Lanti/plan, (6)
Lstudent =Lanti/plan + LKD. (7)

Co-training setting. In the co-training setting, exocentric
and egocentric data are both used to train the model. The
model is then evaluated on the test set of the egocentric
and exocentric data. Figure S3(d) depicts the “exo & ego”
co-training setting.

S1.2.3 Annotation details

Cross-view action anticipation. The annotation process
for cross-view action anticipation involves three stages: (1)
extracting verbs and nouns for each fine-level action clip,
(2) aligning the closed categories of training, validation,
and testing set across egocentric and exocentric videos, (3)
restricting the closed set to the intersection of categories
present in all egocentric and exocentric videos, and (4) man-
aging the long-tail distribution of the data by filtering out
categories that occur less than 1/100 of the highest occurrence
category. We delete all video clips without any label. As a re-
sult, this task contains 19/31 verb/noun categories. The size
of the egocentric train/validation/test set is 34.5k/7.7k/17.3k,
and the size of the exocentric train/validation/test set is
6.1k/2.1k/4.8k.

Cross-view action planning. Cross-view action planning
utilizes coarse-level annotations with a total of 27 classes for
training, validation, and testing. We sort all action steps in



Method Gaze
Anticipation↑ Planning↓

Ego-V Ego-N Exo-V Exo-N Ego Exo

Exo-only % 30.7 23.5 40.9 42.5 83.5 74.6
Ego-only % 33.4 37.6 28.7 18.0 82.3 83.7
Ego-only ! 40.9 52.3 37.5 37.6 79.0 81.8
Ego-only Center 33.4 38.8 33.1 33.7 81.2 84.4

Unsupervised Domain Adaption
Ego2Exo % 34.1 38.0 34.2 28.4 82.1 83.5
Ego2Exo ! 41.0 53.7 37.2 37.3 81.5 83.8
Exo2Ego % 31.6 24.2 39.9 42.4 82.9 77.4
Exo2Ego ! 34.1 31.5 40.2 42.3 81.8 76.9

Knowledge Distillation
Ego2Exo % 30.7 25.1 41.5 47.6 83.0 75.1
Ego2Exo ! 30.6 25.3 41.0 47.1 83.1 74.6
Exo2Ego % 34.6 38.3 30.1 18.9 81.9 84.9
Exo2Ego ! 41.2 55.9 37.0 39.8 79.0 82.6

Co-training
Ego & Exo % 33.9 37.3 40.3 46.7 82.0 74.8
Ego & Exo ! 41.6 52.9 39.6 47.9 78.3 74.4

Table S1. Results of cross-view action anticipation and planning
benchmarks on the validation set. For anticipation, the class-mean
Top-5 recall is used as the evaluation metric (higher is better). For
planning, the Edit distance is used as the evaluation metric (lower
is better). Gray cells show the cross-view performance.

each video by their start time. Consequently, this task is ori-
ented towards predicting potential sequences of future action
starts. After filtering, we obtain 2.1k/0.8k/1.2k action steps
in the egocentric train/validation/test set and 2.4k/0.3k/0.4k
action steps in the egocentric train/validation/test set. Note
that it is also possible to use the fine-level action annotations
for this task, which will result in a much larger dataset split.
We do not use this setting since we observe a large varia-
tion in the fine-level actions due to practical issues such as
environmental constraints and unskilled performance. We
believe the combination of our cross-view anticipation and
cross-view planning can well evaluate the ability to bridge
ego-exo procedural activities at both clip-level and task-level.

S1.2.4 Additional results

Table S1 presents the results of our baseline models on the
validation set for the cross-view action anticipation and plan-
ning benchmarks. In the first block, zero-shot cross-view
evaluation (e.g., Exo-only evaluated on ego view, and Ego-
only evaluated on exo view) results in the lowest performance
levels. This outcome underscores the challenge of apply-
ing learned representations from one perspective directly to
another without any intermediary processing or adaptation.
A significant improvement in zero-shot cross-view perfor-
mance is observed with the introduction of gaze-cropped
inputs. This enhancement suggests that gaze can be an
effective bridge for the ego and exo actions. Further im-
provements in performance are noted when implementing
methods such as Unsupervised Domain Adaptation (UDA),
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Figure S4. Cross-view referenced skill assessment with triplet loss
and relation network.

Knowledge Distillation (KD), and Co-Training (CT). The
results also demonstrate that the extent of performance im-
provement varies across different cross-view settings. This
variation highlights the complexity of bridging activities in
ego and exo views and the importance of selecting the most
appropriate method based on the specific requirements of
each task.

S1.3. Cross-view referenced skill assessment

S1.3.1 Detailed task definition

Our training dataset comprises the following components:
(1) Egocentric Video Pairs: Denoted as P , each pair
(Cego1, Cego2) ∈ P is arranged such that video Cego1

displays better skill than Cego2. (2) Accompanying
Gaze Sequences: For every pair of egocentric videos
(Cego1, Cego2) ∈ P , corresponding gaze sequences (g1, g2)
are provided. (3) Exo-View Expert Demonstration: Each pair
(Cego1, Cego2) ∈ P is accompanied by an expert demonstra-
tion video Cexo, showcasing the same action as in Cego1

and Cego2 from an exo-view perspective. The objective is
to develop a ranking function f(·) that adheres to the con-
dition f(Cego1) > f(Cego2) given (g1, g2) and Cexo as the
reference.

S1.3.2 Implementation details

Network architecture. As shown in Fig. S4, we assume
Cego1 exhibits a higher skill level compared to Cego2. Built
upon a pairwise ranking skill assessment model RAAN [9],
we employ different video encoders, including I3D [4] and
VideoMAE [21], to extract video features from Cego1, Cego2,



#video clip #valid pairs Av. length Corr. exo Gaze

EPIC-Skills [8] 216 2592 85s % %

BEST [9] 500 16782 180s % %

Infant Grasp [16] 94 3318 5s % %

Ours 3304 34239 10s ! !

Table S2. Comparison of skill assessment datasets based on human
pairwise ranking annotation.

and Cexo. The features are processed by an attention module
as described in [9] and resulting in refined features Fego1,
Fego2, and Fexo. Then, we apply two different approaches
to leverage the reference exo-view demonstration video: 1)
Triplet loss (TL). We designate Fexo as the anchor, Fego1 as
the similar item (positive), and Fego2 as the dissimilar item
(negative). Then, we apply a triplet margin loss with margin
= 1, to aid the model in understanding that the anchor is
closer to the positive than the negative item. In our scenario,
Cego1 demonstrates a skill level closer to the expert. 2)
Relation network (RN). Inspired by [20], we implement a
relation network that concatenates the features of the ego and
exo clips. Precisely, we set Fego1 = Concat(Fego1, Fexo)
and Fego2 = Concat(Fego2, Fexo). By combining ego and
exo features, this network is designed to implicitly discern
which of the two egocentric video clips bears a closer relation
to the demonstration video in terms of skill level. Finally, the
refined features Fego1 and Fego2 are processed by an MLP
to regress skill scores for the two ego videos.

Training. For the ego branch of our network, we employ
the training objectives from [8, 9]. 1) a margin ranking loss
is applied on the finally generated scores to ensure ego1
is ranked higher than ego2. 2) a disparity loss is applied
within the attention module to prevent the network from
getting trapped in local minima during training 3) a rank-
aware loss and a diversity loss are also applied following [9].
Besides the ego branch, to leverage the exo demonstration
video, we propose to utilize a triplet loss to aid the model in
comprehending that ego1 exhibits skills more akin to those
of an expert.

S1.3.3 Annotation details

We include two types of annotations for skill level. The
first type is self skill assessment. During data collection,
subjects are asked to assess themselves on various aspects,
including their familiarity with cooking environments, the
number of times they have completed the task previously,
the frequency of performing the task, the typical duration
required to complete the task, and whether they’ve taught
others how to perform the task. Based on the self-evaluation
results, we have observed a considerable diversity in subjects’
skill levels, which motivates us to craft the skill assessment
benchmark. One related work is HoloAssist [22] where they

Method Gaze Egg Cracking Peeling Stir-fry Cutting Avg

Ego pairs only
Who’s better* [8] % 79.08 74.52 82.87 78.35 78.71
RAAN* [9] % 83.09 77.30 86.25 82.86 82.23
Who’s better* [8] ! 79.95 75.67 82.94 79.21 79.44
RAAN* [9] ! 84.79 78.97 86.14 82.96 83.22

Ego pairs + Exo
RAAN* [9] + RN % 83.14 77.39 86.47 82.48 83.01
RAAN* [9] + TL % 81.99 77.48 86.16 82.54 82.04
RAAN* [9] + RN ! 82.84 78.75 86.19 83.33 82.78
RAAN* [9] + TL ! 83.64 79.41 86.14 83.07 83.07

Table S3. Ranking accuracy of cross-view referenced skill assess-
ment. “*” means using VideoMAE [21] extracted video features.
In the upper part of the table, only ego video pairs are used, while
in the lower part, exo demonstrations are incorporated by “RN”:
relation network and “TL”: triplet loss.

show the distribution of the performers’ familiarity with
the tasks measured by a self-reported score (0-10) by the
subjects. However, no related benchmarks is provided by
HoloAssist.

One drawback of self-evaluated skill level is that indi-
viduals may showcase varying skill levels in each video
instance, even across multiple attempts [8]. As a more ob-
jective complement of the self-assessment, we adopt the
pairwise comparison approach [8, 9, 16] for annotation. We
provide annotators with four criteria: Fluency, Speed, Profi-
ciency, and Skillfulness. These standards serve as the basis
for their ranking assessment. From the annotation results,
we find 40% of the rankings deviate from the rankings based
on the self-evaluations of the two subjects in the video pair.
This finding supports that relying solely on self-evaluation is
inadequate for creating a robust skill assessment benchmark.

As shown in Table S2, our dataset stands out as the only
skill assessment dataset featuring the gaze modality and cor-
responding exo-view demonstration videos. Notably, our
dataset surpasses previous ones in both video clip quantity
and valid pair numbers. We follow the setting in [8, 9] to
employ 4 individuals to rank the same video pair to ensure
credibility. We exclude annotations with fewer than 3 con-
sistent opinions instead of 4 to ensure our dataset contains
challenging pairs. Regarding action categories, our dataset
comprises 6 actions: Egg cracking, Peeling, Stir-fry, Cutting
into chunks, Slicing into strips, and Chopping into pieces.
In the main paper, we merge the last three actions into a
comprehensive category labeled “Cutting”, encompassing
various knife-using skills.

S1.3.4 Additional results

Results with I3D [4] feature are shown in Table 5 of the
main manuscript. We show the results with VideoMAE [21]
feature in Tab. S3. Comparing results from the two tables,
we observe an overall increase in performance in all cases
in Table S3 because of the stronger backbone model. While



Method Gaze

Val Test

Ego Exo Ego Exo

Acc Edit F1@Avg Acc Edit F1@Avg Acc Edit F1@Avg Acc Edit F1@Avg

Exo-only % 27.99 33.81 6.95 38.64 40.28 23.64 24.80 35.29 8.13 42.65 37.32 20.14
Ego-only % 65.35 44.25 40.91 19.81 21.18 7.31 62.50 44.29 39.43 25.09 22.45 6.89
Ego-only ! 66.01 46.60 41.78 21.08 23.29 7.44 65.99 48.83 42.95 25.14 22.28 8.17
Ego-only Center 62.14 45.92 36.60 19.13 23.02 7.37 60.42 46.29 36.52 22.83 22.55 7.2

Unsupervised Domain Adaption
Ego2Exo % 65.52 44.15 40.78 20.78 22.02 7.55 63.41 44.35 40.15 25.67 23.12 7.45
Ego2Exo ! 66.12 46.42 42.11 21.78 23.99 8.43 65.91 48.81 42.78 25.87 23.44 8.56
Exo2Ego % 28.76 33.76 7.56 38.44 39.98 23.61 25.34 35.75 8.67 42.56 36.71 20.03
Exo2Ego ! 29.12 34.91 8.49 38.47 40.01 23.69 27.78 39.12 9.87 42.45 36.66 21.12

Knowledge Distillation
Ego2Exo % 33.25 25.68 9.18 39.62 40.36 20.07 32.00 26.70 9.73 43.03 38.06 20.44
Ego2Exo ! 31.16 28.62 8.60 40.28 42.24 23.09 29.17 28.49 8.45 41.68 36.33 20.12
Exo2Ego % 65.91 45.80 42.37 22.65 17.86 7.16 62.77 46.73 41.12 28.20 17.78 6.06
Exo2Ego ! 66.02 47.98 41.71 23.47 24.24 8.12 64.53 49.36 42.24 28.34 23.49 7.80

Co-training
Ego & Exo % 64.43 42.00 37.40 37.93 42.18 23.20 61.75 41.45 36.43 41.07 38.73 21.93
Ego & Exo ! 66.57 44.36 39.87 41.89 39.13 22.70 65.57 44.30 39.62 42.27 35.10 22.50

Table S4. Results on cross-view temporal action segmentation benchmark. Gray cells show the cross-view performance.

we can still observe performance gain when adding Exo ref-
erence video, this improvement is less significant compared
with the corresponding table in the main manuscript. We sus-
pect that this variation is attributed to the varying degrees of
influence that the intrinsic properties of the extracted features
exert on the observed enhancements.

S1.4. Cross-view action segmentation

S1.4.1 Detailed task definition

The action segmentation task in our framework is focused
on both categorizing each time step and delineating action
steps within procedural videos. Given a lengthy video V
comprising NV frames at 25 FPS, the model is tasked with
classifying the category of each frame in the video. The
evaluation metric includes assessing frame-level classifica-
tion accuracy. Additionally, sequence-level metrics such as
edit distance and instance-level metric F1 are employed for
further evaluation [11]. The extended cross-view action seg-
mentation benchmark, similar to cross-view action anticipa-
tion and planning, aims to pursue performance improvement
by receiving aid from other views.

S1.4.2 Implementation details

Network structure. We employ I3D [4] as the feature extrac-
tor to generate temporal features, following the methodology
of previous work [11]. To implement our various training
settings, we utilize the SSTDA [6] code base. For both train-
ing and testing, we downsample feature sequences and label
sequences by a factor of 5 for efficiency.

Training. The loss function used to train the action segmen-

tation task is derived from SSTDA [6]. The model consists of
multiple stages. The overall loss function for a single stage
is a combination of the classification loss and smoothing
loss:

Lseg =Lcls + γLsmooth. (8)

The model is trained using the Adam [14] optimizer with
a learning rate set to 1e-3 and the training process spans 150
epochs.

Cross-view settings. Similar to cross-view action anticipa-
tion and planning, action segmentation also performs four
cross-view settings. Though cross-view action segmentation
shows different input and output, which yields dense predic-
tion, the implementation of cross-view settings is consistent
with Section S1.2.2.

S1.4.3 Annotation details

The annotation for the cross-view action segmentation task
is derived from coarse-level annotations. To create non-
overlapping segment annotations for temporal action seg-
mentation, we establish the center point of the overlap-
ping portion of two segments as their boundary. Subse-
quently, we introduce background segments labeled as “no
action” in temporal regions not covered by action annota-
tions. Finally, we obtain 173/57/85 videos in the egocentric
train/validation/test set and 210/24/32 videos in the exocen-
tric train/validation/test set.



Text
Decoder

<Exo> With your left hand assisting your right hand, use your 
right hand to hold the knife and crush the garlic cloves. <Ego> 

Video 
Encoder

Hold the knife with both hands 
and cut the garlic into powder.

Video 
Encoder

Figure S5. Cross-view referenced captioning with a video encoder
and a text decoder.

S1.4.4 Experimental results

Table S4 presents the results of our baseline models on the
validation set and test set for the cross-view action segmen-
tation benchmarks. These results mirror the trends observed
in the action anticipation and planning benchmarks: with-
out any assistance from another view, the models can only
perform well on the test data in the same view. The inclu-
sion of gaze data enhances model performance in both the
ego-only setting and the cross-view setting. This suggests
that focusing on areas of visual attention, as indicated by
gaze data, is beneficial for better understanding and segment-
ing actions, regardless of the viewpoint. When information
from another view is leveraged, all three methods – Unsuper-
vised Domain Adaptation (UDA), Knowledge Distillation
(KD), and Co-Training (CT) – contribute to performance
improvements in the cross-view setting. Each method offers
a different mechanism for integrating cross-view insights,
thus aiding in the segmentation task. Reflecting the varying
degrees of labeled data utilization, Co-Training (CT) tends
to outperform Knowledge Distillation (KD), which in turn
outperforms Unsupervised Domain Adaptation (UDA).

S1.5. Cross-view referenced video captioning

S1.5.1 Detailed task definition

Cross-view referenced video captioning evaluates the
model’s captioning ability to leverage cross-view informa-
tion for caption generation. Our motivation is that egocentric
videos require extensive efforts to collect, and are thus lim-
ited in scale and diversity. In contrast, large-scale exocentric
videos can be easily sourced from the Internet. The ques-
tion is, how to leverage such exocentric videos to help the
understanding of limited egocentric videos?.

Formally, at the training stage, we have egocentric videos
of limited size {(V ego

1 , T ego
1 ), ..., (V ego

N , T ego
N )} with N sam-

ples, and exocentric videos {(V exo
1 , T exo

1 ), ..., (V exo
M , T exo

M )},
where N ≪ M . Each video is paired with a fine-grained

text description. The goal is to train a cross-view video cap-
tioning model f(·) using exocentric videos as references. At
the inference stage, the model is required to generate the
captions of the testing egocentric videos, given the other set
of exocentric videos as references. Note that, N ≤ M only
holds for the training set. In particular, we limit the number
of the referenced exocentric videos by formulating the task
as a K-shot captioning [1] problem, where K denotes the
maximum number of exocentric videos that the model is
allowed to use during inference. The inference process can
be formulated as f(V ego|{(V exo

1 , T exo
1 ), ..., (V exo

K , T exo
K )} In

practice, we consider three settings, 0-shot, 1-shot, and 2-
shot.

S1.5.2 Annotation

We directly apply the fine-grained language annotations in
our dataset. The referenced exocentric videos are randomly
selected for training/validation/testing, respectively. The
training set only contains 1000 egocentric videos with 6270
referenced exocentric videos. For the validation/testing set,
there are 8181/2143, 18243/4930 egocentric videos and ref-
erenced exocentric videos, respectively.

S1.5.3 Implementation details

For the baseline model, we choose a Flamingo-style caption-
ing model [1, 2, 15], an advanced vision-language model
designed for few-shot vision-language tasks, as shown in
Fig. S5. Please refer to [1] for the architectural details. We
simply pre-pend the referenced video(s) before the input
video, and add the referenced caption as prompts to the text
decoder. We train the model for 3 epochs using the Adam
optimizer, with an initial learning rate of 1e-4 and a batch
size of 32. We adopt the cross-view association network
(Fig S1(b)) to select referenced samples.

S1.5.4 Results

Table S5 lists the cross-view referenced captioning perfor-
mance. We consider three baseline models: (i) Single-view
models include Ego-only and Exo-only, where the former
one merely adopts egocentric videos for training and infer-
ence without seeing exocentric videos. The Exo-only model
uses all referenced exocentric videos for training, and it is
then evaluated on egocentric videos. (ii) Co-training model
is trained on both egocentric videos and referenced exocen-
tric videos, and transferred to egocentric test videos. (iii)
Referenced-training model refers to our model introduced
in Fig. S5, where the model leverages one (1-shot) or two
(2-shot) exocentric videos to make predictions. As shown in
Table S5, both the co-training model and referenced-training
models outperform single-view models. For co-training mod-
els, the performance gain is due to the increased number of



Method Ref Train Ref Infer Validation Test

BLEU-4 METEOR ROUGE-L CIDER BLEU-4 METEOR ROUGE-L CIDER

Exo-only % % 0.024 0.126 0.212 0.122 0.023 0.124 0.208 0.112
Ego-only (0-shot) % % 0.049 0.116 0.270 0.332 0.048 0.112 0.266 0.314

Co-training
Ego+Exo ! % 0.069 0.139 0.294 0.460 0.068 0.137 0.290 0.427

Ref-training
Ego+Exo (1-shot) ! ! 0.047 0.121 0.275 0.378 0.046 0.123 0.275 0.372
Ego+Exo (2-shot) ! ! 0.044 0.119 0.272 0.372 0.045 0.122 0.272 0.380

Table S5. Cross-view referenced captioning performance. “Ref Train/Ref Infer” refers to whether the model uses exocentric videos during
training/inference.

training data (ego+exo), compared to ego-only and exo-only
counterparts. In terms of referenced-training models, they
generally outperform the ego-only counterpart by addition-
ally incorporating exocentric videos in the model. Results of
both the co-training model and referenced-training models
indicate the effectiveness of utilizing exocentric videos in
improving egocentric video captioning when the data is of
limited scale.

S1.6. Zero-shot action recognition

We assess the zero-shot classification performance of verb
and noun subsets. In cases where samples have multiple
labels, we straightforwardly replicate the samples for testing.
Our testing procedure follows CLIP [19], evaluating the
vision-language models based on Top-1 and Top-5 accuracy.

S1.6.1 Annotation

In this task, our evaluation specifically addresses zero-shot
transfer within the closed set and does not encompass cross-
view settings. It is noteworthy that this annotation does
not require ensuring consistent categories between egocen-
tric and exocentric datasets across their respective valida-
tion and testing sets. The size of the resulting egocen-
tric verb-validation/verb-test/noun-validation/noun-test set
is 14.4k/32.6k/20.2k/44.8k, and the size of the exocen-
tric verb-validation/verb-test/noun-validation/noun-test set
is 4.2k/10.4k/5.7k/13.1k, respectively.

S1.6.2 Implementation details

We use the 16 prompts from the zero-shot classification on
Kinetics [4] for verb and noun subsets. These prompts are
listed in Table S7. We sample the center frame of each video
clip, and use OpenAI CLIP [19] to extract the visual features
and textual features.

S1.6.3 Experimental results

Table S6 shows the performance of zero-shot action recog-
nition. Oracle is the upper bound of accuracy, given that

this is a multi-class action recognition problem. On both the
validation set and the test set, the zero-shot performance on
egocentric videos is worse than that on exocentric videos,
particularly in the top-1 accuracy. This result indicates the
limitation in cross-view action understanding of the current
method.

S1.7. Fine-tuned action recognition

S1.7.1 Detailed task definition

We formulate the conventional Fully-supervised setting to a
multi-label classification task. In assessing the performance
of fully supervised action recognition, we employ the class-
wise multi-label mean Average Precision (Marco mAP) eval-
uation metric due to the presence of multiple labels per clip.
This evaluation protocol is reasonable because it matches
the long-tail attribution of actions in EgoExoLearn.

S1.7.2 Annotation

In this task, our evaluation focuses on the closed set and
does not consider cross-view settings. Thus, our annotations
ensure that egocentric and exocentric datasets maintain con-
sistent categories across their respective training, validation,
and testing sets. At last, this task contains 81/211 verb/noun
categories in the egocentric set and 69/183 verb/noun cat-
egories in the exocentric set. The size of the egocentric
train/validation/test set is 36k/8k/18k, and the size of the
exocentric train/validation/test set is 6.2k/2.1k/4.8k.

S1.7.3 Implementation details

For evaluating this task, we utilize SlowFast-R50 [12] and
MViT-Small [10] as the backbones. The weights pretrained
on the Kinetics [4] dataset are employed for both backbones.
Frames within each action clip are uniformly sampled and
fed into the backbone. The multi-label classification task is
supervised using the standard cross-entropy loss. Table S9
lists the training hyperparameters.



Model

Val Test

Ego-Verb Ego-Noun Exo-Verb Exo-Noun Ego-Verb Ego-Noun Exo-Verb Exo-Noun

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Oracle 56.14 99.79 39.72 99.29 50.06 99.74 36.74 97.70 55.41 99.66 46.55 99.69 45.77 99.72 37.00 97.59

CLIP [19] 7.89 22.71 7.08 19.26 9.49 22.62 7.70 20.45 6.96 21.95 6.39 18.19 9.02 20.99 7.09 19.93

Table S6. Results of zero-shot action recognition. Oracle denotes the upper bound of accuracy, because of the multi-label nature of clips in
our dataset.

Figure S6. We use a web-based language annotation interface for the annotators. Annotators mark a segment of the video, select a category
for this segment, and describe the segment based on the annotation requirement in their mother language.

S1.7.4 Experimental settings and results.

Table S8 shows the result of fine-tuned action recognition.
MViT-S [10] (with 16 frames input) exhibits superior per-
formance and generalization compared to the R50-based
SlowFast [12] (with 4 frames for the slow branch and 32
frames for the fast branch as input). The results in Table S8
also reveal great potential improvement on more sophisti-
cated model structures for this dataset.

S2. Additional Dataset Details

S2.1. Language annotation

Different from previous datasets [7, 13, 22], our dataset in-
cludes two-level language annotations with manually anno-
tated temporal boundaries. As described in Section 3.2 of the
main manuscript, our annotation includes a coarse-level lan-
guage annotation and a fine-level language annotation. We
designed a web-based interface to facilitate the annotation.
An example screenshot is shown in Figure S6.

For each video, the annotators are asked to quickly skim
the video to grab the overall content, and then begin the an-
notation of each session. For the daily tasks, the annotators
are instructed to describe each segment based on their own
knowledge. For the tasks in specialized laboratories, we train
the annotators showing them the process of the experiments,
the technical terms of some tools/reagents (e.g., pipette), and
the purpose of each action step. To avoid describing objects
that are impossible to determine visually (e.g., the appear-
ance of water and PBS reagent are exactly the same), we ask
the annotators to describe their visual appearance instead
(e.g., pink reagent in a bottle with green cap). Figure S7
shows a word cloud of the language annotations separated
by views and tasks. Figure S9 shows the distribution of
lengths of the coarse and fine level language annotations.
The average lengths of the coarse and fine level annotations
are 21.5 seconds and 4.6 seconds, respectively.

Translation & Parsing. For all the non-English language
annotations, we translate them into English using ChatGPT.
We conduct a manual check on the translation quality and use



Ego-view, daily tasks Ego-view, lab tasks Exo-view, daily tasks Exo-view, lab tasks

Figure S7. Word cloud of annotations separated by views and tasks.

# Prompts

1 A photo of action {}.
2 A picture of action {}.
3 Human action of {}.
4 {}, an action.
5 {} this is an action.
6 {}, a video of action.
7 Playing action of {}.
8 {}
9 Playing a kind of action, {}.
10 Doing a kind of action, {}.
11 Look, the human is {}.
12 Can you recognize the action of {}?
13 Video classification of {}.
14 A video of {}.
15 The man is {}.
16 The woman is {}.

Table S7. Prompt templates used in the zero-shot action recognition
task.

View Model Val Test

Verb Noun Verb Noun

Ego Slowfast-R50 [12] 4×16 27.03 34.77 25.58 33.25
MViT-S [10] 29.83 39.45 28.16 36.46

Exo Slowfast-R50 [12] 4×16 15.79 22.08 11.71 16.65
MViT-S [10] 18.59 22.81 13.53 19.36

Table S8. Results of fine-tuned action recognition. We utilize
the multi-label mean Average Precision (mAP) evaluation metric
because of the existence of multiple labels per clip. This choice is
consistent with the methodology described in [18]. Specifically, we
adopt macro mAP as the class-mean metric.

Google Translation API to translate again for unsatisfactory
translations.

To effectively parse and analyze the annotations in our
dataset, we employ a rule-based framework designed to
extract verbs and nouns associated with specific actions of

config Egocentric Exocentric

optimizer AdamW [14]
optimizer momentum β1, β2 = 0.9, 0.999
weight decay 1e-4 (Slowfast), 0.05 (MViT)
learning rate scheduler warmup constant
learning rate 1e-4
batch size 32 32
total epochs 20 30
flip augmentation ✓
crop size 224
randomresizedcrop scale=(0.08, 1)

Table S9. Training hyperparameters used for fine-tuned action
recognition benchmark.

the left and/or right hand. The process is methodical and
iterative to ensure the annotation quality. The overview of
the parsing is as follows:
• Sentence Splitting: We begin by splitting the annotations

into individual sentences using separators like commas.
This step helps in isolating distinct actions or descriptions
for more focused analysis.

• Keyword Identification and Extraction: For each split sen-
tence, we use NLTK to identify keywords that indicate
actions related to the left hand, right hand, both hands, etc.
This involves analyzing the sentence structure and content
to pinpoint relevant verbs and nouns. One challenge we
encounter is the word “left” itself, which can be a verb
in certain contexts. To address this, we temporarily mask
the mentions of left and right hands in each sentence and
then re-extract the verbs and nouns. This masking helps in
distinguishing between the directional use of “left” and its
use as a verb.

• Manual Review and Iteration: After the initial extraction,
we conduct a manual review of the results to identify and
correct any errors. This step is crucial for ensuring the
accuracy and relevance of the extracted terms. If errors
are found, we revisit the first and second steps, making
necessary adjustments. This iterative process continues
until the manual review yields satisfactory results.



Number of verbs (left axis) and verb durations (right axis) of right hand Number of verbs (left axis) and verb durations (right axis) of left hand

Number of nouns (left axis) and noun durations (right axis) of right hand Number of nouns (left axis) and noun durations (right axis) of left hand

Figure S8. Occurrence and duration distribution of the annotated fine-level verbs and nouns associated with the left and right hands.
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Figure S9. Distribution of the lengths of the coarse-level and fine-
level language annotations.

Figure S8 shows the verbs and nouns extracted after asso-
ciating with the left and right hands. We only show the top
30 categories due to the size limit.

S2.2. Post-processing.

In dealing with the practical challenges of recording ego-
centric videos, particularly with Pupil Invisible devices that
sometimes capture footage at variable frame rates due to
issues like overheating, we employ post-processing for stan-
dardization. All videos are converted to a constant frame
rate of 25fps to ensure uniformity and consistency in our
dataset.

Additionally, our gaze data, which is recorded at a high
frequency of 120Hz, provides detailed insights into the

viewer’s point of focus during the demonstration follow-
ing process of the video. To ease the use of this gaze data,
we align the timestamps of the egocentric camera with the
eye-tracker. Once the alignment process is complete, we
register each gaze data point to the temporally closest frame
in the video. We then take the average of all gaze data points
within one frame and use this as the final gaze data.

In Figure S10, we visualize the video frames
along with the annotated fine-level language annotations.
EgoExoLearn features a new demonstration following set-
ting that is a complement to existing egocentric and ego-exo
datasets. Meanwhile, as can be seen in Figure S10, compared
with existing egocentric datasets, our language annotations
contain much longer sentences, enabling our dataset to be
used in the captioning benchmarks.

S2.3. IRB approval

We receive IRB approval before the data collection, adhering
to the ethical standards and guidelines for research involv-
ing human participants. Participants involved in the study
were provided with detailed consent forms and information
sheets. These documents thoroughly explained the data cap-
ture process, the purpose of the study, and how the data
would be used in the future. The consent forms, along with
the information sheets, were reviewed and approved by the
IRB to ensure they met all ethical standards and adequately
informed participants. We maintain these documents and
can provide them upon request for verification or further
inquiry into our ethical and procedural practices during the
data collection.



With the right hand, lift the 
pot and swirl the oil inside 

the pot.

Hold the bowl with the right 
hand and turn on the faucet 

with the left hand.

Evenly pour the beaten egg into 
the pan with the left hand.

Fold the tofu skin twice 
using both hands.

Use your right hand to 
adjust the knob and turn 

on the heat.

Use a spatula in the right 
hand to stir-fry the 

vegetables in the pan.

Hold the knife with both 
hands and cut the garlic into 

powder.

Hold the bowl with the left
hand, then crack the egg with

the right hand.

Use a knife in your left 
hand to slice the 

cucumber.

Hold the potato with your 
left hand, and use your right 

hand to peel the potato.

Use a red pen to mark the 
petri dish with right hand.

Hold the bottle with your left 
hand, and use a pipette in 

your right hand to aspirate 
the reagent from the bottle.

Hold the pipette with both 
hands. Adjust the pipette 

with the right hand.

Hold the test tube with 
both hands, and open the 
cap with the right hand.

Lift up the finished rack 
with both hands.

Use the dropper in left hand 
to drop the transparent 
reagent into the syringe.

Use left hand to pour the 
white powder from the 
spoon onto the paper.

Hold the petri dish with the
left hand, and disinfect it

with your right hand.

Use your left hand to take 
out a stack of petri dishes 

from the incubator.

Use your right hand to pick 
up the pink tube rack.

Use your left hand to flip the 
spatula and fry the other side 

of the eggplant in the pan 
until golden brown.

Hold the eggplant with your 
left hand, and use a knife in 
your right hand to cut the 

eggplant into pieces

Use your right hand to hold 
the spoon and mix the 

eggplant and cornstarch in 
the bowl until well blended. 

With your left hand assisting 
your right hand, use your 

right hand to hold the knife 
and crush the garlic cloves.

With your right hand, add an 
appropriate amount of 

cornstarch into the bowl of 
eggplant and mix it evenly.

Use both hands to open the 
lids of two test tubes.

Use your right hand to pat 
your left hand, and with your 

left hand, pour the white 
powder onto a weighing paper.

Use your left hand to open the 
lid of the petri dish. With your 

right hand, use a dropper to 
add red reagent into it.

Use a black pen in your 
right hand to make notes 

on the petri dish.

Use the pipette in your 
right hand to add reagents 

into the test tube held in 
your left hand.

Daily Tasks
Ego-view

Lab Tasks
Ego-view

Daily Tasks
Exo-view

Lab Tasks
Exo-view

Figure S10. Examples of video frames and corresponding fine-level language annotations in our dataset.



S2.4. Tasks

Our dataset is collected for 5 types of daily tasks and three
types of specialized laboratory tasks. The collection is per-
formed in four different kitchens and three different special-
ized laboratories. The participants’ ages range from 18 to 40
years with diverse occupations such as athletes, housekeep-
ers, security guards, university students, and researchers. We
carefully choose the daily tasks and specialized lab tasks
such that a long series of procedures is needed before fin-
ishing. This can reflect the complexity of real-life activities
meanwhile enabling our new benchmarks for ego-exo proce-
dural activity bridging. Table S10 shows the names of the
8 tasks with an example procedure. In real recordings, the
procedures are usually more complicated due to repetition
and other practical issues related to the environment. Note
that the scientific name of the specialized reagents are not
included in the language annotations but are described using
their visual appearance.
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Task name Scenario Example procedure

Task1:
Twice-
cooked
Pork

Daily

1. Prepare spices: Take out and cut some scallion, ginger, and garlic for later use.
2. Prepare the pork: boil the pork together with scallion and ginger to remove impurities. Drain and set
aside. Wash the pot if necessary.
3. Prepare vegetables: Take some pepper and onion, wash, and discard unused parts.
4. Cut vegetables: Cut the prepared vegetable into slices, and put the slices into a plate for later use.
5. Cut the pork: Remove the water on the pork. Use a knife to cut the pork into slices, and set aside for
later use.
6. Stir-fry the pork: Add oil into heated pot. Then add the prepared spices into the pot. After stir-frying
for about 10 seconds, add the pork into the pot.
7. Stir-fry the vegetables: Heat the pot and add oil, then add vegetables into the pot. Stir-fry until the
vegetable is well-cooked, then add the pork into the pot.
8. Add seasoning: Add salt, soy sauce, sugar into the pot. Stir-fry a few times to evenly distribute the
flavors.
9. Transfer: Transfer the cooked Twice-cooked Pork from the pot to a plate. Wash the pot if necessary.

Task2: Tofu
Skin with
Hot Pepper

Daily

1. Prepare tofu skin: Take out the tofu skin, fold them and cut the tofu skin into slices.
2. Prepare hot pepper: Take out some hot pepper, squeeze by hand and then cut into pieces.
3. Prepare spice: Take out and cut some scallion, ginger, and garlic for later use.
4. Boil tofu skin: Put some water into the pot, add baking soda. Boil the tofu skin until the water
becomes cloudy.
5. Wash tofu skin: Take out the tofu skin and put them into cold water. Wash the tofu skin such that the
smell of soda diminishes. Take out and drain water.
6. Prepare sauce in the pot: Heat up the pot and add some oil. Put the spices into the pot. Use a spoon
to put some water, soy sauce, and salt into the pot and heat up until the water boils.
7. Cook tofu skin: Put the tofu skin into the pot, and continue to boil until the pot becomes dry.
8. Cook hot pepper: Add hot pepper into the pot, stir-fry for several times.
9. Transfer: Add some oil into the pot, then transfer the cooked dish into a plate.

Task3: Stir-
fried potato,
eggplant
and green
pepper

Daily

1. Prepare potato: Take out some potatoes, peel and clean them.
2. Prepare eggplant: Take out some eggplants, remove the stems, and clean them.
3. Prepare green pepper: Take out some green pepper, remove the stems, and clean them.
4. Cut green pepper: Squeeze the green pepper using the side of the knife, then cut them into pieces.
5. Cut eggplant: Rolling cut the eggplant into pieces. Use hand to squeeze water out of the eggplant
pieces. Put some cornstarch onto the eggplant pieces and mix well.
6. Cut potato: Cut the potatoes into pieces.
7. Prepare spices: Take out and cut some scallion, ginger, and garlic for later use.
8. Prepare sauce: Take out a bowl. Add water, soy sauce, cornstarch, salt, sugar, vinegar, cooking wine
into the bowl and mix them.
9. Boil potatoes: Boil some water and put the potatoes in. Take the potatoes out when the edges become
transparent.
10. Fry vegetables: Add oil into the pot, heat the oil up and fry the peppers first and then the eggplants
and then the potatoes.
11. Stir-fry: Add some oil into the pot, heat up and put the spices into the pot. Stir-fry a few times. Add
the prepared sauce into the pot and then add all the vegetables. Stir-fry until the vegetables and the
sauce are well mixed.
12. Transfer: Transfer the cooked dish from the pot into a plate.



Task4: Moo
Shu Pork Daily

1. Cut pork: Take out a piece of pork and cut into small slices.
2. Prepare pork: Put the pork into a bowl. Add some water and wash. Squeeze the pork and pour the
water. Put the pork back and add oil, salt, and cooking wine. Mix well.
3. Prepare vegetables: Wash the necessary vegetables, use the pot to boil the vegetables. Take out for
later use.
4. Prepare egg: Crack some eggs into a bowl, mix the eggs.
5. Boil vegetables: Boil some water in the pot. Add vegetables and continue to boil for a minute.
6. Fry eggs: Add oil into the pot and then fry the mixed egg. Put the fried egg scramble into a bowl.
7. Stir-fry vegetables: Heat the pot and add oil. After the oil gets heated, first add the prepared spices
and then add the vegetables. Stir-fry the vegetables.
8. Stir-fry pork: Without taking the vegetables out of the pot, add pork into the pot, stir-fry all ingredients
together.
9. Stir-fry egg: Without taking the ingredients out of the pot, add scrambled egg into the pot, stir-fry all
ingredients together.
10. Transfer: Transfer the cooked dish from the pot into a plate.

Task5:
Tomato
dough drop
soup

Daily

1. Prepare spices: Take out and cut some scallion and cumin for later use.
2. Prepare tomatoes: Take out tomatoes, wash and peel.
3. Cut tomatoes: Use a knife to cut the tomatoes first into slices and then into small pieces.
4. Prepare eggs: Crack eggs into a bowl, then stir until evenly mixed.
5. Fry eggs: Heat oil in a pan, add the evenly mixed egg mixture, and stir-fry, finally transfer the cooked
scrambled eggs to a plate.
6. Stir-fry tomatoes: Put the chopped tomatoes into the pan, stir-fry them, and then add the scrambled
eggs.
7. Soup-making: Add a large amount of clear water to the pot and bring it to a boil.
8. Prepare dough: Gradually add water to the flour while stirring until the flour forms dough.
9. Soup-making: Drop the flour dough into the boiling soup, while adding them, stir continuously.
10. Add seasoning: Add salt, pepper, and MSG (if desired) to the soup.
11. Transfer: Transfer the soup into a large bowl.

Task6: Solid
Phase Pep-
tide Synthe-
sis

Chemical
lab

1. Weighing: Use a balance to weigh the desired amount of amino acid powder (white powder). Put the
powder into a test tube.
2. Reaction: Use a pipette to aspirate some SPPS resin (Transparent liquid) into the test tube. Shake the
test tube and put the test tube onto the shaker machine.
3. Deprotection: Add the needed reagent into the tube to separate resin and peptide.
4. Suction Filteration: Take the test tube from the shaker machine, wash the peptide inside the tube, and
suck the liquid into the vacuum tube.
5. Checking: Manual check and take necessary notes.

Task7: Total
Protein Ex-
traction

Medical
lab

1. Preparation: Take out several test tubes, add the necessary amount of PBS reagent (transparent liquid).
Take out the cells from the fridge, disinfect, and warm the cells.
2. Wash cells: Use a pipette to transfer the cells into test tubes.
3. Centrifuge: Balance the test tubes in the centrifuge and then start the centrifugation.
4. Reagent making: Prepare some petri dishes, mark each dish, and add the complete medium (pink
liquid) into each dish.
5. Transfer cells: Take the cells out of the centrifuge, and check the cell state. Transfer the cells into the
prepared petri dish.
6. Quantification: Use an electron microscope to check the cells and record the required information.
7. Other necessary steps: Repeat necessary steps, make necessary reagents, etc.



Task8: Cell
subculture

Biology
lab

1. Preparation: Prepare the cell, test tubes, reagents, and petri dishes. Mark accordingly.
2. Wash Cells: Use a pipette to aspirate PBS reagent, use PBS to wash the cells.
3. Digestion: Use a separate pipette to add pancreatic enzymes (pink liquid) into the cells, put the cells
into an incubator and wait for 3 minutes.
4. Quantification: Use an electron microscope to check the cells and record the required information.
5. reagent making: Prepare some petri dishes, mark each dish, and add the complete medium (pink
liquid) into each dish. Use the complete medium to wash the petri dish.
6. Centrifuge: Balance the test tubes in the centrifuge and then start the centrifugation.
7. Transfer cells: Take the cells out of the centrifuge, and check the cell state. Transfer the cells into the
prepared petri dish.
8. Incubation: Put the cells with the petri dish into the incubator.

Table S10. The tasks in our EgoExoLearn with example procedures.
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