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6. Proof of Theorem 1
In this section, we first introduce the internal covariate shift
in CNN without batch normalization layers and then pro-
vide the proof of Theorem 1.

6.1. Internal Covariate Shift

Given a CNN model with ReLU-Conv ordering, in the l-
th convolution layer, the sparse filters are represented as
θl ∈ Rks×ks×cin×cout , where ks denotes the kernel size;cin
and cout denote the number of input and output channels,
respectively. For an input value al−1 ∈ Rhin×win×cin , the
convolution operation in the l-th layer that yields the output
value al ∈ Rhout×wout×cout is:

al = Conv(θl, f(al−1)), (9)

where f(·) is any activation function such as ReLU, leaky
ReLU, etc. It should be noted that al−1 is not just an input;
it is also the output of the l − 1-th layer.

As illustrated in Figure 7, the above convolution oper-
ation can be converted into a linear multiplicity version as
:

ψl =W lxl/cin, (10)

where weight matrix W l ∈ Rcout×(ks·ks·cin) is the flat-
tening version of the convolution filters θl. The i-th row
of the linear weight W l is the flattening result of the i-
th filter of the original filters, θli. The linear input xl ∈
R(ks·ks·cin)×(hout·wout) is the stacked convolution patch
from activation f(al−1). The resultant multiplication, ψl,
corresponds to a reshaped version of the original output al.
The i-th row of the linear result ψl is the flattening result of
the i-th channel of the original output, ali.

Denote the mean and variance values of the i -th filter of
the original filters as E(θli) = µθ and Var(θli) = σ2

θ . As-
suming the mean and variance values of the linear input xl

are E(xl) = µx and Var(xl) = σ2
x, the mean and variance

of the i-th channel of output ali will be :
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i) = E(W l
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ix
l)/c2in

= (σ2
θσ

2
x + σ2

θµ
2
x + µ2

θσ
2
x)/c

2
in,

(12)

Consider f(·) to be the activation function of ReLU,
which implies that the input value µx has a positive mean.

During training, the mean value of each filter θli is difficult
to keep at zero. Therefore, without a batch normalization
layer, the mean output from the convolution layer will not
reach around zero.

6.2. Proof

Theorem Given a CNN model structured in a ReLU-Conv
sequence, and allowing the l-th convolution layer to per-
form operations as depicted by the forward pass in Equa-
tion 6 and NSConv in Equation 7. For the i-th channel
of the activation value, f(al−1

i ), with its mean and vari-
ance denoted as µf , σ

2
f . The mean and variance for the i-th

channel of the output value, ali, will be:

E[ali] = 0, Var[ali] = γ2(σ2
f + µ2

f ). (13)

Proof. As illustrated in Figure 7, convolution operation
can be converted to a linear multiplicity version as:

ψl = Ŵ lxl/cin, (14)

where the weight matrix Ŵ l ∈ Rcout×(ks·ks·cin) is the
flattening version of the sparse normalized convolution fil-
ters θ̂l. The i-th row of the linear sparse weight Ŵ l

i is the
flattening result of the i -th filter of normalized filters, θ̂li.

Therefore, the mean and variance of the i-th row of nor-
malized linear weight, Ŵ l

i are E(Ŵ l
i ) = 0 and Var(Ŵ l

i ) =
γ2cin. The mean and variance for the i-th of the output
value will be:

E(ali) = E(ψl
i) = E(Ŵ l

i )E(xl)/cin = 0, (15)

Var(ali) = Var(ψl
i) = Var(Ŵ l

ix
l)/c2in

= γ2(σ2
x + µ2

x),
(16)

Because the linear input xl is the sampled version of the
input activation f(al−1), considering randomness, the mean
and variance of the linear input xl will be µx = µf , σ2

x =
σ2
f . Therefore, we can get:

E(ali) = 0, Var(ali) = γ2(σ2
f + µ2

f ). (17)

6.3. Experiment Result

To assess the effectiveness of our proposed Normalized
Sparse Convolution (NSConv), we conducted experiments
on the CIFAR-10 dataset with the ResNet18 model in our
proposed FedMef framework, with the sparsity of target pa-
rameters set to 0.9. The results of the experiment, shown



Algorithm 1 FedMef
Input: dense initialized parameters θ, K devices with local dataset D1, . . .DK , iteration number t, original learning rate
schedule ηt, architecture adjustment schedule ξlt denoting the number of adjustment parameters for each layer l, the number
of local epochs per round E, the number of rounds between two adjustment ∆R, and the rounds at which to stop adjustment
Rstop.
Output: a well-trained model with sparse parameters θt and specified mask mt

1: t← 0
2: θ0,m0 ← random prune dense initialized parameters θ
3: while until converge do
4: for each device k = 1 to K do
5: Fetch sparse parameters θt and mask mt from the server
6: for i = 0 to E − 1 do
7: θ̂kt+i ← Filter-wise Sparse Standardization as in Equation 7.
8: if t mod ∆RE = 0 and t ≤ ERstop then
9: Calculate budget-aware learning rate βt+i as in Equation 4.

10: µt+i ← max(ηt+i, βt+i)

11: θkt+i+1 ← θkt+i − µt+i∇Ls
k(θ̂

k
t+i,mt,Dk

t+i)⊙mt, using scaled activation pruning
12: else
13: θkt+i+1 ← θkt+i − ηt+i∇Lk(θ̂

k
t+i,mt,Dk

t+i)⊙mt, using scaled activation pruning
14: end if
15: end for
16: Upload θkt+E to the server
17: if t mod ∆RE = 0 and t ≤ ERstop then
18: for each layer l in model do
19: Compute top-ξlt gradients g̃k,l

t for pruned parameters with a memory space of O(ξlt)

20: Upload g̃k,l
t to the server

21: end for
22: end if
23: end for
24:
25: The server does
26: θt+E ←

∑K
k=1

|Dk|∑K
k=1 |Dk|

θkt+E

27: if t mod ∆RE = 0 and t ≤ ERstop then
28: for each layer l in model do
29: g̃l

t ←
∑K

k=1
|Dk|∑K

k=1 |Dk|
g̃k,lt

30: I l
grow ← the ξlt pruned indices with the largest absolute value in g̃l

t

31: I l
drop ← the ξlt unpruned indices with smallest weight magnitude in θt+E

32: Compute the new mask ml
t+E by adjusting ml

t based on I l
grow and I l

drop

33: end for
34: θt+E ← θt+E ⊙mt+E // Prune the model using the updated mask
35: else
36: mt+E ← mt

37: end if
38: t← t+ E
39: end while

in Figure 8, demonstrate that NSConv can achieve an ef-
fect similar to that of a Batch Normalization layer. Further-
more, the activation values of ResNet18 without normal-
ization decrease and the distribution becomes more central-

ized as the layer deepens, further supporting Equations 11
and 12, which indicate that the mean and variance values
will be scaled with 1/cin and 1/c2in, respectively.
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Figure 7. Illustration of transforming the convolution operation into linear multiplication: Start by flattening each filter from the convolu-
tional filters, θl, and stacking them to produce the linear weight W l. Next, stack each convolution patch from the input value f(al−1) to
form the linear input xl. The resultant multiplication, ψl, corresponds to a reshaped version of the original output al.

7. Memory, FLOPs and Communication Costs

In our experiments, we conducted a comparative analysis
between the proposed FedMef and other baselines, focusing
on training memory footprints, maximum training FLOPs
per round, and communication costs per round. In this sec-
tion, we first introduce the sparse compression strategies
and then present the estimated calculations of the above
metrics.

7.1. Compression Schemes

The storage for a matrix consists of two components, values
and positions. Compression aims to reduce the storage of
the positions of non-zero values in the matrix. Suppose we
want to store the positions of m non-zeros value with b bit-
width in a sparse matrix M . The matrix M has n elements
and a shape nr × nc. Depending on the density d = m/n,
we apply different schemes to represent the matrix M . We
use o bits to represent the positions ofm nonzero values and

denote the overall storage as s.

• For density d ∈ [0.9, 1], dense scheme is applied, i.e.
s = n · b.

• For density d ∈ [0.3, 0.9), bitmap (BM) is applied, which
stores a map with n bits, i.e., o = n, s = o+mb.

• For density d ∈ [0.1, 0.3), we apply coordinate offset
(COO), which stores elements with its absolute offset and
it requires o = m⌈log2 n⌉ extra bits to store position.
Therefore, the overall storage is s = o+mb

• For density d ∈ [0., 0.1), we apply compressed sparse
row (CSR) and compressed sparse column (CSC) de-
pending on size. It uses the column and row index to
store the position of elements, and o = m⌈log2 nc⌉ +
nr⌈log2m⌉ bits are needed for CSR. The overall storage
is s = o+mb

For tenor, we carry out reshaping before compression.
This approach allows us to determine the memory needed
to train the network’s parameters.



Figure 8. Distribution of output from all convolution layers in ResNet18 model using Batch Normalization layers (BatchNorm), without
normalization layers (w/o Norm), and with Normalized Sparse Convolution (NSConv). The range of activation values exhibits a decrease,
and the distribution becomes more centralized as the layer deepens. This observation aligns with Equations 11 and 12, which suggest that
the mean and variance values will be scaled with 1/cin and 1/c2in, respectively.

7.2. The Memory Footprint of Training Models

We estimate the memory footprint for training to be a com-
bination of parameters, activations, activation gradients, and
parameter gradients. The memory for parameters is equal
to the storage of parameters. We estimate the memory for
activations by taking the maximum value of multiple mea-
surements. For simplicity, we set the memory for gradients
of activations to be equal to the memory for activations. We
do not consider the memory for hyper-parameters and mo-
mentum. Assuming the memory for dense and sparse pa-
rameters are Mp

d and Mp
s respectively, and the memory for

dense and sparse activations are Ma
d and Mp

s , the training
memory for each algorithm would be:
• FedAVG. This technique requires the training of a dense

model; thus, the memory for the gradients of parameters
is close to Mp

d . The memory footprint for training is ap-

proximately 2Mp
d + 2Ma

d .
• FL-PQSU. This technique trains a static sparse model,

so the memory for parameter gradients is close to Mp
s .

The memory needed for training is approximately 2Mp
s +

2Ma
d .

• FedTiny and FedDST. Since these methods only update
the TopK gradients in memory to adjust the model struc-
ture, extra memory is used to store the top-ξ gradients
and their indices. Therefore, the memory for the parame-
ter gradients is approximate Mp

s +Mξ, where Mξ is the
memory for the TopK gradients. Consequently, the total
memory footprint is 2Mp

s + 2Ma
d +Mξ.

• FedMef. In comparison to FedTiny and FedDST, Fed-
Mef applies scaled activation pruning to activation, re-
sulting in a cache memory of activation of Ma

d . However,
the activation gradients are not pruned, leading to a total



memory footprint of 2Mp
s +Ma

s +Ma
d +Mξ.

7.3. Training FLOPs

Compared to other baselines, FedMef incurs minimal com-
putational overhead. Firstly, in budget-aware extrusion,
the computational overhead is attributed to the calculation
of the regularization term ||θlow||, with a complexity of
O(|θlow|) = O(|θ|). Second, in Scaled Activation Prun-
ing, the computational overhead arises from the normal-
ization in Normalized Sparse Convolution and activation
pruning. The normalization operation applies only to un-
pruned parameters, resulting in a computational complex-
ity of O((1 − sm)|θ|) = O(|θ|). Additionally, the com-
plexity associated with activation pruning is denoted as
O(|a| log |a|), where |a| represents the number of activa-
tion elements. The cumulative computational overhead is
thus defined as O(|θ| + |a| log |a|). These computational
overheads are considered negligible compared to the intri-
cate computations during training.

Training FLOPs comprise both forward pass FLOPs and
backward pass FLOPs, where the total operations are tal-
lied layer by layer. In the forward pass, layer activations are
computed sequentially using previous activations and layer
parameters. During the backward pass, each layer computes
the activation gradients and the parameter gradients, assum-
ing twice as many FLOPs in the backward pass as in the
forward pass. FLOPs in batch normalization and loss cal-
culation are omitted.

In detail, assuming that the inference FLOPs for dense
and static sparse models are Fd and Fs, and the local iter-
ation number is E, the maximum training FLOPs for each
framework are as follows:
• FedAVG. Necessitates training a dense model, resulting

in training FLOPs per round equal to 3FdE.
• FedTiny and FedDST. Utilizes RigL-based methods to

update model architectures, requiring clients to calculate
dense gradients in the last iteration. The maximum train-
ing FLOPs are 3Fs(E − 1) + Fs + 2Fd.

• FedMef. Compared to FedTiny and FedDST, FedMef
incurs a slight calculation overhead for BaE and SAP.
Therefore, the maximum training FLOPs are 3(Fs +
Fo)(E − 1) + (Fs + Fo) + 2Fd, where Fo is the com-
puting overhead of BaE and SAP. We estimate Fo as
Fo = 4(1 − sm)nθ + na log na, where nθ is the num-
ber of parameters θ and na is the number of activation
elements. 4(1 − sm)nθ represents the FLOPs of regular-
ization and WSConv, while na log na denotes the FLOPs
for activation pruning.

7.4. The Communication Cost

Regarding the communication costs, FedMef aligns with
the communication cost of FedTiny [17]. In contrast to
other baselines such as FedDST, wherein, for every ∆R

rounds, clients are required to upload the TopK gradients to
the server to support parameter growth, the number of TopK
gradients ξt is aligned with the count of marked parameters
θlow, where ξt = ζt(1−sm)nθ and ζt = 0.2(1+cos tπ

RstopE
)

is the adjustment rate for the t-th iteration. Consequently,
the upload overhead is minimal. Furthermore, there is no
communication overhead for the model mask m during
download because sparse storage formats, such as bitmap
and coordinate offset, contain identical element position in-
formation. We omit other auxiliary data, such as the learn-
ing rate schedule.

Therefore, assuming that the storage for dense and sparse
parameters is Od and Os, respectively, the data exchange
per round is:
• FedAVG. The data exchange is 2Od, containing upload-

ing and downloading dense parameters.
• FedDST. As mentioned above, the model mask does not

require extra space to store, as the compressed sparse pa-
rameters already contain the mask information. There-
fore, the data exchange per round is 2Os, including up-
loading and downloading sparse parameters.

• FedTiny and FedMef. Compared to FL-PQSU and Fed-
DST, FedTiny and FedMef require uploading TopK gra-
dients every ∆R rounds. Therefore, the maximum data
exchange per round is 2Os + Oξ, where Oξ denotes the
storage of the TopK gradients.

8. More Experiments
To showcase the efficiency of the proposed FedMef, we
conducted experiments in various federated learning sce-
narios. Moreover, we also analyze the sensitivity to key
hyperparameters in the proposed FedMef. Additionally, to
demonstrate the efficacy of FedMef in various model archi-
tectures, we selected ResNet34 and ResNet50 for experi-
mentation.

8.1. Impact of Local Epochs Number

Due to resource constraints and limited device battery life,
the number of local training epochs is necessarily restricted.
However, this constraint may impact the training of feder-
ated pruning frameworks and potentially undermine their
performance. To assess this, we evaluate FedMef and other
baseline frameworks on the CIFAR-10 dataset under vary-
ing local epoch numbers, employing the ResNet34 model.

As depicted in Table 3, our findings reveal that a smaller
number of local epochs can affect the performance of Fe-
dAVG, and this impact extends to the federated pruning
framework as well. Nevertheless, FedMef consistently out-
performs other baselines. Notably, the performance of Fed-
DST experiences a significant decline when the local epoch
number is very low, underscoring the necessity of sufficient
local training for FedDST before adjusting model architec-
ture.



# Epochs 10 5 2
FedAVG 82.32% 79.87% 70.15%
FedDST 80.30% 76.04% 64.70%
FedTiny 80.41% 77.35% 70.01%
FedMef 81.18% 78.46% 70.06%

Table 3. Mean accuracy of FedMef and baseline frameworks on
CIFAR-10 with various numbers of local epochs per round using
ResNet34 model.

# Clients 10 5 3 1
FedAVG 78.25% 77.47% 74.94% 66.38%
FedDST 72.28% 73.21% 68.26% 56.05%
FedTiny 74.42% 74.52% 72.36% 61.45%
FedMef 76.24% 76.33% 72.41% 61.04%

Table 4. Mean accuracy of FedMef and baseline frameworks on
CIFAR-10 with various numbers of selected clients per round us-
ing ResNet50 model.
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Figure 9. The mean accuracy of the proposed FedMef with various
regularization coefficient λ

8.2. Impact of Selected Clients Number

Due to diverse network conditions on devices, the number
of clients participating in each round is limited. However,
this constraint, while improving the negative effect of data
heterogeneity, can slow down the convergence speed and
affect final performance. In our evaluation, we evaluate
the proposed FedMef and other baseline frameworks with
various numbers of selected clients per round, utilizing the
ResNet50 model.

As presented in Table 4, FedMef consistently outper-
forms other baselines in most cases. Notably, the perfor-
mance of FedDST decreases significantly compared to our
FedMef and FedTiny, underscoring the necessity of suffi-
cient local training for FedDST.

8.3. Impact of Regularization Coefficient λ

We assess the sensitivity of the regularization coefficient (λ)
in the proposed budget-aware extrusion (BaE). Different co-
efficients of λ are set in FedMef and experiments are con-
ducted on the CIFAR-10 dataset using the ResNet34 model.

Acc(Memory) FedMef(stm = 0.8) FedAVG + SAP FedAVG
MobileNetV2 65.50%(84.94 MB) 64.04%(101.28 MB) 64.28%(148.63 MB)

ResNet18 81.73%(45.91 MB) 81.32%(111.51 MB) 81.15%(120.74MB)

Table 5. Accuracy and memory footprint on the CIFAR-10 dataset

As illustrated in Figure 9, the accuracy of FedMef ini-
tially increases and then decreases sharply as the coefficient
λ increases. The initial increase demonstrates the effective-
ness of budget-aware extrusion, while the subsequent de-
crease is attributed to large λ values that rapidly zero out
the parameters, resulting in an excessively sparse model.

8.4. Empirical comparison with dense model

To further demonstrate the effectiveness of BaE and SAP,
we conducted experiments on both dense and sparse mod-
els on the CIFAR-10 dataset. The results, as illustrated in
Figure 5, indicate that SAP maintains the performance of
dense models effectively, while reducing the memory foot-
print of activation. Furthermore, FedMef with BaE outper-
forms its counterpart without BaE (FedAVG+SAP), under-
scoring BaE’s contribution to improving performance.

9. More Detail and Information
9.1. NSConv v.s. BN

NSConv is more suitable for CNNs, which are popular on
edge devices. It excels with sparse weights, as it may in-
troduce more computational overhead on dense weights.
NSConv outperforms BN when the batch size is small, as
shown in Table 5 right (FedMef v.s. FedMef w/o SAP).
This is important for low-memory devices that can only
train with a small batch size. NSConv matches BN per-
formance when batch size is large, as shown in Figure 8 .

9.2. Structured pruning v.s. Unstructured pruning

We use unstructured pruning(pruning parameters) instead
of structured pruning (pruning filters) as structured prun-
ing often suffers from a serious performance drop when the
sparsity is higher than 10% [42] and has a limited impact on
memory reduction. In contrast, our proposed unstructured
pruning method can achieve 80%+ sparsity while maintain-
ing accuracy, as shown in Table 1.

9.3. Convergence of Model Structure

We adopt the sparse dynamic pruning technique [10, 11,
32, 35] which starts training from a random sparse network
and eventually evolves into the final sparse model structure
with accuracy comparable to starting from a dense model.
Previous research [35] empirically suggests that the struc-
ture converges faster than the parameters, but the theoretical
guarantees remain unexplored, which we plan to investigate
in the future.
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