
FocSAM: Delving Deeply into Focused Objects in Segmenting Anything

Supplementary Material

The ”SAM vs FocSAM.mp4” comparison video is available
in the supplemental materials.

A. Implementation Details

A.1. Datasets

In this study, we conduct experiments on six datasets to as-
sess our methods comprehensively:
• GrabCut [14]: Features 50 images, each with distinct

foreground and background, totaling 50 instances.
• Berkeley [7]: Comprises 96 images (100 instances), with

some overlap with GrabCut.
• DAVIS [13]: Focuses on 345 specific frames from 50

videos, aligning with previous studies [2, 9, 11].
• SBD [5]: Includes 2857 validation images with 6671 in-

stances for evaluation purposes.
• MVTec [1]: Selected for its high-quality pixel-wise anno-

tations of industrial defects, ideal for interactive segmen-
tation’s practical applications. Specific defects like cut-
lead and misplaced elements in transistors are excluded
due to their misalignment with image segmentation, re-
fining the dataset to 1238 instances.

• COD10K [3]: Contains 2026 instances of camouflaged
objects that blend into their backgrounds, providing a dis-
tinct challenge for interactive segmentation.

A.2. Training Details

In training our proposed FocSAM on COCO [10] and
LVIS [4], we adopt the AdamW optimizer [12]. The initial
learning rate is set to 1e − 6 for the first 1, 500 iterations,
which is then raised to 1e− 4. We then apply a polynomial
decay to the learning rate, setting AdamW’s β1 to 0.9 and
β2 to 0.999. Our batch size is 4 per GPU, totaling 16 sam-
ples across 4 GPUs, and images are resized and padded to
1024× 1024. We attempt to jointly train FocSAM with the
SAM decoder, but such a strategy results in unstable train-
ing. Therefore, we fine-tune the SAM decoder [8] alone
over 320, 000 iterations at the first stage. Then, at the sec-
ond stage we freeze the trained decoder and train the Foc-
SAM’s focus refiner for additional 160, 000 iterations.

A.3. Click Simulation

During training, we adopt the click simulation strategy from
InterFormer [6] due to its simplicity. We set the upper limit
for simulated clicks at 20. To determine the distribution of
click counts, we employ a decay coefficient γ, where the
probability for a given number of clicks decreases progres-
sively. Specifically, the probability of having i clicks is γ

times the probability of having i − 1 clicks, with the con-
straint that γ < 1. This method ensures a higher likelihood
of selecting fewer clicks, reducing computational costs. For
joint training on COCO [10] and LVIS [4] datasets, Inter-
Former [6] sets γ at 0.6 for both. Instead, to avoid bias
towards small objects in LVIS, we use different γ values for
COCO (γ = 0.6) and LVIS (γ = 0.9). This adjustment al-
lows for more effective use of LVIS’s detailed annotations
in the later refinement stages. In FocSAM, we first decide
the number of clicks, N , and then determine the refinement
step, K, using a similar sampling strategy, where we set dis-
tinct γr values for COCO (γr = 0.6) and LVIS (γr = 0.35)
with N as the upper limit to ensure a similar refinement pro-
cess. After determining the N and K (only for FocSAM),
SAM and FocSAM perform click simulations on training
images using GT as an oracle to specify clicks randomly
within incorrectly predicted regions.

B. Ablation Study
B.1. Convergence Analysis

We perform convergence analysis experiments on the
SBD [5], DAVIS [13], MVTec [1], and COD10K [3]
datasets with sufficient samples. In these experiments, we
compute the average IoU for all samples at each click,
comparing our FocSAM with previous methods [2, 6, 11].
As depicted in Figure 1, the results showcase FocSAM’s
fast convergence across these datasets. FocSAM notably
achieves high IoU values with only a few clicks. Such
rapid convergence is particularly pronounced in the chal-
lenging MVTec [1] and COD10K [3] datasets, where Foc-
SAM outperforms other methods, including the previous
state-of-the-art SimpleClick-ViT-H [11]. In SBD [5] and
DAVIS [13] datasets, FocSAM demonstrates a convergence
rate on par with SimpleClick-ViT-H [11], underscoring its
efficiency in various interactive segmentation scenarios.

B.2. SAM’s Bounding Box Prompt

Experimental settings. SAM [8] can simultaneously pro-
cess click and bounding box prompts. Notably, in our
proposed FocSAM, the Dwin-MSA module conceptually
shares similarities with the processing of bounding box
prompts. Therefore, we evaluate SAM with additional
bounding boxes around target objects for ablation studies.
Specifically, we utilize the GT to find the bounding box
encompassing the target object and expand it by 1.4× to
include the context of the surrounding area. During the in-
teractive segmentation of SAM, these boxes are supplied as
an additional prompt. Likewise, we report the results on



Figure 1. Convergence Analysis. Each subfigure displays the average IoU for all samples at successive clicks. These plots illustrate the
rapid convergence of FocSAM, which achieves high IoU values with only a few clicks.

Method SBD MVTec COD10K

20NoC@90 100NoC@95 20NoC@90 100NoC@95 20NoC@90 100NoC@95

SAM (w/o BBox) 7.62 63.40 13.97 81.90 10.36 76.73
SAM (w/ BBox) 7.27 63.28 13.71 82.08 10.66 76.65
FocSAM 4.69 32.96 11.14 62.82 8.91 62.61

Table 1. Ablation study on SAM with bounding boxes.

Dwin-MSA SBD MVTec COD10K

20NoC@90 100NoC@95 20NoC@90 100NoC@95 20NoC@90 100NoC@95

Window-16 4.69 32.96 11.14 62.82 8.91 62.61
Window-8 4.75 34.08 11.31 64.69 9.21 64.17
Window-32 4.85 33.95 11.27 63.54 9.25 64.18

Table 2. Ablation study on Dwin-MSA’s window sizes.

SBD [5], MVTec [1], and COD10K [3] datasets, including
the metrics 20NoC@90 and 100NoC@95.
Results. Table 1 reveals that integrating interactive infor-
mation from bounding boxes offers marginal improvement
to SAM’s performance. This demonstrates that SAM can-
not fully exploit the potential of such interactive informa-
tion from the additional boxes. In contrast, FocSAM effec-
tively utilizes similar information through its Dwin-MSA
module. Specifically, FocSAM enhances the performance
by overlaying bounding boxes on previous predictions and
feeding these into the Dwin-MSA module to select win-
dows relevant to the object. This approach underscores Foc-
SAM’s efficiency in leveraging available information for
enhanced performance.

B.3. Impact of Dwin-MSA’s Window Size

In Table 2, our ablation study on Dwin-MSA’s window
size indicates window-16 outperforms both window-8 and
window-32. The limited attention scope of window-8 con-
strains its performance. In contrast, while window-32 has
a broader attention span, it incorporates excessive object-
unrelated areas, which undermines its effectiveness.

C. Qualitative Results
In Figure 2 3, we present the interactive segmentation re-
sults of FocSAM and SAM across various scenarios. For
a more comprehensive set of results, please refer to the ac-
companying video titled “SAM vs FocSAM.mp4.”



GT 1st Click 5th Click 10th Click 20th Click

SAM
FocSAM

SAM
FocSAM

SAM
FocSAM

SAM
FocSAM

IoU = 8.96 IoU = 65.52IoU = 64.92IoU = 30.89

IoU = 0.40 IoU = 11.96IoU = 53.53IoU = 26.24

IoU = 56.93 IoU = 93.01IoU = 86.82IoU = 85.61

IoU = 7.41 IoU = 62.02IoU = 59.74IoU = 3.89

IoU = 76.99 IoU = 91.48IoU = 89.14IoU = 87.22

IoU = 56.15 IoU = 78.25IoU = 24.17IoU = 47.72

IoU = 64.35 IoU = 87.84IoU = 86.70IoU = 82.29

IoU = 55.45 IoU = 92.56IoU = 93.46IoU = 80.38

Figure 2. Qualitative results (1). On the left, an example is depicted with an image overlaid with its GT (blue mask). To the right, two rows
display interactive segmentation results at the 1st, 5th, 10th, and 20th clicks, where the most recent click is highlighted with a star, green
for positive and red for negative feedback. The top row illustrates the results from SAM, and the bottom row shows those from FocSAM.
These visual comparisons reveal the segmentation efficiency of FocSAM and SAM at different stages of annotator clicks.



GT 1st Click 5th Click 10th Click 20th Click

SAM
FocSAM

SAM
FocSAM

SAM
FocSAM

SAM
FocSAM

IoU = 12.49 IoU = 77.55IoU = 53.88IoU = 8.08

IoU = 22.35 IoU = 91.22IoU = 89.75IoU = 3.59

IoU = 33.77 IoU = 88.37IoU = 83.71IoU = 71.89

IoU = 4.50 IoU = 88.37IoU = 79.11IoU = 5.18

IoU = 58.86 IoU = 93.29IoU = 92.80IoU = 91.33

IoU = 1.42 IoU = 3.00IoU = 4.38IoU = 14.29

IoU = 1.43 IoU = 74.36IoU = 63.96IoU = 57.35

IoU = 77.53 IoU = 95.64IoU = 91.97IoU = 79.04

Figure 3. Qualitative results (2). On the left, an example is depicted with an image overlaid with its GT (blue mask). To the right, two rows
display interactive segmentation results at the 1st, 5th, 10th, and 20th clicks, where the most recent click is highlighted with a star, green
for positive and red for negative feedback. The top row illustrates the results from SAM, and the bottom row shows those from FocSAM.
These visual comparisons reveal the segmentation efficiency of FocSAM and SAM at different stages of annotator clicks.
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