
G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images

Supplementary Material

In the appendix, we provide more details and more exper-
imental results of the proposed G-NeRF1. We organize the
appendix into the following sections.
• In section A, we depict the preliminary of NeRF.
• In section B, we provide more implementation details.
• In section C, we show more qualitative and quantitative

results.
• In section D, we provide more discussions about the po-

tential limitations of our method and the difference with
concurrent works.

A. Preliminary of Neural Radiance Fields
NeRF [11] aims to synthesize novel views of complex scenes
from sparse input views. By querying 5D coordinates along
a camera ray and leveraging volume rendering technique,
NeRF generates the color of an image pixel that intersects
with the ray. Specifically, for a given pixel coordinate x ∈
R2 and camera parameters P of an image, we acquire a
camera ray r(t) = o+ td where o is camera center, d ∈ S2
denotes view direction calculated with o, x and P. Here, the
procedure of acquiring rendered image color can be defined
as the following equations with near and far bounds tn and
tf regarding r:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt,

T (t) = exp(−
∫ t

tn

σ(r(s))ds),

(1)

where the density σ(x) is the probability that the ray ter-
minates at a particle. T (t) denotes the probability the ray
r travels from tn to t without hitting any particle. To nu-
merically estimate the continuous integral (Eq. 1), NeRF
samples particles along the continuous camera ray r(t) with
a stratified sampling strategy in which r(t) is evenly parti-
tioned into n bins. By querying the position and direction
of each particle with a multi-layer perception (MLP), we
obtain the color and density of each particle. Using Eq. 2,
we accumulate the color and density of particles along a ray
for the pixel color of the rendered image:

Ĉ(r) =

Ns∑
i=1

τiαic(r(ti)), D̂(r) =

Ns∑
i=1

τiαizi,

where τi =

i−1∏
j=1

(1− αj), αi = 1− e−σ(r(ti))δi ,

(2)

1We suggest checking the video demo synthesized by our G-NeRF in
the supplementary.
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Figure A. More details of our network architecture. Our G-
NeRF consists of a scene encoder E, an EG3D backbone Ge and
three super-resolution blocks.

where τi denotes the accumulated transmittance along the
ray from the tn to tf and δi = ti+1 − ti is the distance
of two adjacent particles. D̂(r) is depth value of the ren-
dered image and zi denotes the depth of the ith particle in
the stratified r(t). Since estimating Ĉ(r) from c(r) and
σ(r(ti)) is differentiable, NeRF is optimized via minimizing
the MSE loss between Ĉ(r) and the ground truth color C(r)

via equation Lnerf = ||Ĉ(r)−C(r)||22.

B. More implementation Details
B.1. More details of our network architecture

The network architecture of G-NeRF is depicted in Fig. A.
The structure of scene encoder E is ResNeXt [15] and bor-
row from [16]. The NeRF-based generator Gn consists of
an EG3D backbone Ge and a super-resolution module. The
structure of the EG3D-backbone Ge and depth-aware dis-
criminator Dg are borrowed from [3]. Differently, to capture
more information, we increase the latent code dimension
of Ge to 5120. The super-resolution module includes three
super-resolution blocks, which are the same blocks used in
Ge. All these modules are trained from scratch together.

B.2. More experimental details

All experiments are conducted on PyTorch [12] with 2
80GB RTX A800 GPUs. We use Adam [9] with β1 = 0.9,
β2 = 0.999 for E and Gn, and β1 = 0, β2 = 0.99 for Dg.
We set the learning rate as 1e-03 for the generator and 8e-06
for the discriminator. For the hyperparameter λg , we empir-
ically set it to 1.2. We train our model with FFHQ [8] for
4000k images with batch size 24 and for 2000k images with
AFHQv2-Cats [5].

In comparisons on ShapeNet datasets, since
Pix2NeRF [2] does not include an evaluation on the
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Figure B. Ablation study of incorporating real-world images.
Without incorporating real-world images, our model generates re-
sults with poor similarity to the input images.

ShapeNet Cars [4, 13], we first train a Pix2NeRF model
using the official code. We generate 62,000 synthetic
images for ShapeNet Cars and 140,000 for ShapeNet Chairs.
Subsequently, we incorporate the synthetic images with the
ShapeNet datasets to train our model. During the evaluation
phase, for each category, we randomly select one image as
the input and ten images as ground truths.

C. Additional Results

C.1. Training without real-world images

Since we trade off the diversity and geometry quality in
synthetic multi-view data through a truncation ratio of 0.5,
it is important to incorporate real-world images to provide
diverse appearance priors. We train our model without in-
corporating real-world images to verify its effectiveness. As
seen from Fig. B and Tab. A, our model produces results with
poor similarity to the reference images and all the evaluation
metrics decrease compared to our full model.

C.2. More comparison with HeadNeRF

We compare our method with another single-shot novel view
synthesis method named HeadNeRF [7], which introduces
a NeRF-based parametric head model to synthesize control-
lable 3D faces from single-view images. As shown in Fig. C,
HeadNeRF [7] is incapable of generating ID-preserving re-
sults but inherits some artifacts due to the limitation of the
3D Morphable Models (3DMMs). Moreover, HeadNeRF [7]
also requires additional training processes to fit a single im-
age. In contrast, our G-NeRF achieves high-fidelity novel
view synthesis without any test-time optimization.
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Figure C. Qualitative comparison with HeadNeRF [7]. Com-
pared to HeadNeRF [7], our method synthesizes more ID-
preserving and realistic novel views.

Table A. Impact of incorporating real-world images. The bold
numbers highlight the best results.

Trunc. Ratio real-world images Dg SSIM (↑) Depth (↓) ID (↑)

0.5 ✗ ✓ 0.55 0.37 0.16
0.5 ✓ ✓ 0.63 0.35 0.35

C.3. More qualitative results

We present additional qualitative results using various ref-
erence images from three datasets, including FFHQ [8],
CelebAMask-HQ [10] and AFHQv2-Cats [5]. Specifically,
for each reference image, we generate a front view and esti-
mate its geometry following the approach described in [3].
To visualize the geometry results, we use ChimeraX [6]. As
shown in Fig. D, G-NeRF successfully synthesizes novel
views with accurate geometry for a wide range of input im-
ages. Notably, our approach can handle inputs with glasses,
complex lighting environments, different ages, and varying
viewpoints. Although the geometry of AFHQv2-Cats [5] ex-
hibits some hole artifacts due to the limited poses available,
we are still able to generate novel views for these cat faces.

C.4. Impact of latent code dimension

The dimension of the latent code has a substantial impact
on the overall performance. To evaluate the effectiveness of
a larger latent code dimension, we conducted experiments
using different dimension sizes. As illustrated in Tab. B,
increasing the latent code dimension enhances the model’s
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Figure D. More qualitative results. We provide front views and geometry generated with various reference images. Our method is capable
of synthesizing novel views for diverse input on FFHQ [8], CelebAMask-HQ [10], and AFHQv2-Cats [5].

Table B. Quantitative results of different latent code dimensions.
A larger latent dimension can offer increased capacity for models
to capture more information, thereby leading to better performance.

Latent code dim. LPIPS (↓) Depth (↓) FID (↓) KID (↓)

512 0.36 0.36 51.68 3.68
1024 0.35 0.36 49.20 3.66
3072 0.34 0.37 43.10 3.07
5120 (ours) 0.33 0.35 40.24 2.72
7168 0.33 0.36 39.27 2.63

capability to capture finer details. Nevertheless, once the
dimension reaches 5120, the incremental benefits of further
expansion become negligible. Taking into account GPU
memory consumption, we ultimately decided to set the latent
code dimension to 5120.

D. More discussions
D.1. More discussion with concurrent work

In a concurrent study [14], a pre-trained EG3D model is
adopted to synthesize a collection of synthetic images for
single-shot novel view synthesis of human faces and cat
faces. Although this work demonstrates the effectiveness
of synthetic face images, it overlooks the fact that models
trained solely on synthetic data are susceptible to a gradual
decline in either quality (precision) or diversity (recall) [1].
In contrast, our method tackles this issue by incorporating
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Figure E. Failure Cases. Our method may encounter failures when
faces are occluded by items such as clothing.

real-world images into training our model. Meanwhile, no
experimental results were provided on 360◦ datasets such as
ShapeNet Cars [4, 13]. Therefore, the performance of the
proposed method, when trained on this particular dataset,
remains uncertain.

D.2. Potential limitations

In this section, we present an analysis of the failure cases
encountered during our experiments. Our method may en-
counter failures when faces are occluded by items such as
clothing, as illustrated in the first two rows of Fig. E. Unlike
faces which often have a similar shape, these irregular occlu-
sions present a challenge for our model to capture a common
geometry prior. As a result, this occlusion leads to a blurred
area around the faces.
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Figure F. More qualitative comparisons with Pix2NeRF [2] on FFHQ [8] and CelebAMask-HQ [10].
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Figure G. More qualitative comparisons with Pix2NeRF [2] on AFHQv2-Cats [5].
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Figure H. More qualitative results of ablation studies.
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