
LP++: A Surprisingly Strong Linear Probe for Few-Shot CLIP

Supplementary Material

5. Proof of Prop. 1
Let us start with Hw, the Hessian matrix of objective func-
tion (3) with respect to block w ∈ RKD, with block α
being fixed. Let us introduce vector Fik ∈ RKD, which
takes the following form:

Fik = [0, . . . , 0,f t
i , 0, . . . , 0]

t (17)

where embedding vector fi ∈ RD corresponds to the ele-
ments of Fik going from the ((k−1)D+1)th to the (kD)th

position, with the rest of elements of Fik all being equal to
zero. Block-coordinatewise KD×KD Hessian matrix Hw

reads:

Hw =
1

N

N∑
i=1

K∑
k=1

pikFikF
t
ik︸ ︷︷ ︸

Di⊗(fift
i)

− 1

N

N∑
i=1

K∑
k=1

K∑
k′=1

pikpik′FikF
t
ik′︸ ︷︷ ︸

(pipt
i)⊗(fift

i)

=
1

N

N∑
i=1

(Di − pip
t
i)⊗ (fif

t
i)

(18)

where ⊗ denotes the Kronecker matrix product, Di is the
diagonal K ×K matrix whose elements are given by pik:

Di = Diag((pik)1≤k≤K)

and pi ∈ RK is the vector whose elements are pik:

pi = (pik)1≤k≤K

Now, let us show the following intermediate result on diago-
nally dominant, symmetric matrices (Di−pip

t
i), which we

could establish using the the well-known Gershgorin circle
theorem.

Lemma 5.1. Let λ denotes an eigen value of matrix (Di −
pip

t
i), then λ ∈ [0, 1

2]. Therefore, (Di − pip
t
i) is positive

semidefinite and its maximum eigen value verifies:

λmax(Di − pip
t
i) ≤

1

2

Proof. For j ∈ 1, . . . ,K, let Rj denotes the sum of the
absolute values of the non-diagonal entries in the jth row of

a K×K matrix. For Di−pip
t
i, observe the following, due

to probability simplex constraint
∑K

k=1 pik = 1:

Rj = pij
∑
k ̸=j

pik = pij(1− pij) = pij − p2ij

Also, notice that Rj is equal to the diagonal element of the
jth row, which means matrix Di−pip

t
i is diagonally dom-

inant. The Gershgorin circle theorem states that, for any
eigen value λ of a matrix, there exists at least a row j, so
that λ is within the disc centered at the diagonal element of
the row and whose radius is Rj . Using this fact for matrix
Di − pip

t
i means that, for any eigen λ of the matrix, there

exists at least one raw j verifying:

|λ− (pij − p2ij)| ≤ Rj

This yields:

0 ≤ λ ≤ 2(pij − p2ij) ≤
1

2

The last inequality above is due to 0 ≤ pij − p2ij ≤ 1
4 for

pij ∈ [0, 1]. Since all the eigen values of matrix Di − pip
t
i

are in [0, 1
2], then the maximum eigen value is also within

this interval.

From Lemma 5.1, it it straightforward to see that matrix
Di−pip

t
i− 1

2IK is negative semidefinite and, therefore, its
Kronecker multiplication by fif

t
i is also negative semidefi-

nite (as fif
t
i is positive semidefinite). Hence, the following

matrix is negative semi-definite, as it is the sum of negative
semidefinite matrices:

Hw − 1

N

N∑
i=1

1

2
IK ⊗ (fif

t
i) (19)

Therefore:

xtHwx ≤ xt

(
1

N

N∑
i=1

1

2
IK ⊗ (fif

t
i)

)
x ∀x (20)

This yields:

max
∥x∥=1

xtHwx ≤ max
∥x∥=1

xt

(
1

N

N∑
i=1

1

2
IK ⊗ (fif

t
i)

)
x

(21)
Now, recall the following variational characterization of the
maximum eigenvalue of a matrix, following the min-max
theorem, also referred to as the variational principle:

λmax(H) = max
∥x∥=1

xtHx

Using this variational characterization and Eq. (21), we ob-
tain:

λmax(Hw) ≤ 1

2N
λmax

(
N∑
i=1

IK ⊗ (fif
t
i)

)
(22)

Observe that KD×KD matrix
∑N

i=1 IK⊗(fif
t
i) is block-

diagonal with each of its D×D diagonal blocks correspond-
ing to matrix

∑N
i=1 fif

t
i . Therefore, we have:

λmax

(
N∑
i=1

IK ⊗ (fif
t
i)

)
= λmax

(
N∑
i=1

fif
t
i

)

This means that the expression in Eq. (10) in the paper is
an upper bound on the maximum eigen value of Hw, for
τ1 ≥ 2. Hence, it is a valid block Lipschitz constant for the
set of variables in w.

It is also possible to have a tighter, but approximate Lips-
chitz constant by omitting the off-diagonal elements in ma-
trices Di − pip

t
i in the Hessian-matrix expression in Eq.

(18). The approximation is motivated by the fact that these
matrices are diagonally dominant. This gives the following
approximation of the Hessian:

H̃w =
1

N

N∑
i=1

D̃i ⊗ (fif
t
i)

(23)

where D̃i is the diagonal K × K matrix whose elements
are given by pik − p2ik, k = 1, . . . ,K. Since pik − p2ik ≤ 1

4 ,
we have: λmax(D̃i) ≤ 1

4 . Therefore, following the same
arguments as before, we have:

λmax(H̃w) ≤ 1

4N
λmax

(
N∑
i=1

(fif
t
i)

)
(24)

Hence, τ1 ≥ 1 in Eq. (10) in the paper provides an approx-
imate Lipschitz constant for the block of variables in w.

Notice that we still need an eigenvalue decomposition of∑N
i=1 fif

t
i . However, for feature embeddings of size 1024,

i.e., a 1024 × 1024 matrix, this computation, which has to
be performed only once, is manageable; it took 0.3 seconds
on a single NVIDIA RTX A6000 GPU.

Now, let us look at the Hessian matrix of objective func-
tion (3) w.r.t block α ∈ RK , with the variables in w being
fixed. Let vector Tik ∈ RK takes the form:

Tik = [0, . . . , 0,f t
i tk, 0, . . . , 0]

t

where the kth element is equal to f t
i tk and the rest of ele-

ments are equal to zero. This block-coordinatewise K ×K

Hessian reads:

Hα =
1

N

N∑
i=1

K∑
k=1

pikTikT
t
ik

− 1

N

N∑
i=1

K∑
k=1

K∑
k′=1

pikpik′TikT
t
ik′

=
1

N

N∑
i=1

(Di − pip
t
i)⊙ Ti (25)

where ⊙ denotes the Hadamard product and Ti is the K×K
matrix whose element at (k, k′) ∈ [1, . . . ,K]2 is given by:
f t
i tkf

t
i tk′ . As before, omitting the off-diagonal elements

in Eq. (25) yields an approximate Hessian, H̃α, which cor-
responds to the diagonal K ×K matrix whose diagonal el-
ements are given by:

1

N

N∑
i=1

(pik − p2ik)(f
t
i tk)

2, k = 1, . . . ,K

Thus, using pik − p2ik ≤ 1
4 , we obtain for τ2 ≥ 1:

λmax(H̃α) ≤ max
k

τ2
4N

N∑
i=1

(f t
i tk)

2 (26)

This gives the approximate Lipschitz constant in Eq. (11).
Finally, it is well-known that, for two blocks of vari-

ables with Lipschitz constants γw and γα, the following is
a Global Lipschitz constant (See [1]):

γ = 2max(γw, γα) (27)

Therefore, for τ ≥ 2, the expression in Eq. (12) provides
an approximate global Lipschitz constant.

6. Proof of Proposition 2
Consider the following expressions of g1 and g2, for some
λ > 0:

g1 = − 1

N

N∑
i=1

K∑
k=1

yikf
t
i (wk + αktk) +

λ

2

K∑
k=1

∥wk∥2

g2 =
1

N

N∑
i=1

ln

 K∑
j=1

expf t
i (wj + αjtj)

− λ

2

K∑
k=1

∥wk∥2

(28)

It is easy to verify that L = g1 + g2. Let us now write the
gradients of g1 and g2 w.r.t wk, k ∈ [1, . . . ,K]:

∂g1
∂wk

= − 1

N

N∑
i=1

yikfi + λwk

∂g2
∂wk

=
1

N

N∑
i=1

pikfi − λwk (29)

Independently of the value of λ > 0, g1 is convex w.r.t each
wk, k ∈ [1, . . . ,K], as it is the sum of linear and convex
functions. By setting the gradient of g1 w.r.t wk to 0, we
obtain the minimum given in Eq. (13). As for g2, we can
ensure it is convex w.r.t each wk by setting λ as a function of
positive semi-definite (PSD) matrices Ak, as given in Prop.
2. This ensures that the Hessian of g2 is PSD, as Ak is the
Hessian of the first term in g2. Setting the gradient of g2
w.r.t wk to 0 yields the minimum in Eq. (14).

7. More details on the initialization

The technical observations made in the paper in Eq. (13)
and Eq. (15) suggest expressions for initializing variables
αk and wk:

α0
k =

1

βN

N∑
i=1

yikf
t
i tk =

1

βN
α̃k

w0
k =

1

λN

N∑
i=1

yikfi =
1

λN
w̃k (30)

There are two non-negative multiplicative factors, λ and β,
which appear in these expressions. Here, we provide more
details on how to set λ and β systematically (without hyper-
parameter search).

Consider the logit scores for each sample j, according to
our image-text linear probe model:

lj,k =
1

λN
f t
j w̃k+

1

βN
α̃kf

t
j tk ∝ f t

j w̃k+
λ

β
α̃kf

t
j tk (31)

Notice that multiplying λ and β by the same non-negative
multiplicative factor does not change the order of the class
scores, i.e., we only need to set a value for the ratio λ

β , which
balances in Eq. (31) the contribution of the text-embedding
term vs. the contribution of the visual-prototype term. We
set λ

β systematically (without additional hyper-parameters)
as a monotonically decreasing function of the number of
support samples (S = N

K):

λ

β
=

250

S
(32)

The choice in Eq. (32) is motivated by two intuitive reasons.
First, the text-embedding scores are at least one-order of
magnitude smaller than the visual-embedding scores. Sec-
ond, a monotonically decreasing function of S makes sense:
the smaller the number of visual support samples, the bigger
the weight given to the text-knowledge. Finally, by setting
λ
β according to Eq. (32) and λ = 1

N , we initialize the vari-

ables as follows:

α0
k =

250

S

N∑
i=1

yikf
t
i tk

w0
k =

N∑
i=1

yikfi (33)

8. More details on the training-free version of
our method

Here we gave more details on the training-free version of
our method LP++. To be specific, for a given test sample,
we can compute the class scores (logits) as follows:

ltest,k = f t
test(w

0
k + α0

ktk) ∀k

where ftest is the vision embedding of the test sample and
the initial, hyper-parameter free variables α0

k and w0
k are set

according to Eq. (33). Then, the class of test sample f t
test is

predicted as:
k̂ = argmax

k
ltest,k

9. Detailed explanation of the flaw in the exper-
imental evaluation of TIP-adapter [28]

By examining the official GitHub repository6, we found that
the original implementation of TIP-adapter [28] uses large
test-data performance feedback for choosing the hyper-
parameters and best model. Therefore, we re-evaluated
TIP-adapter using the same small validation sets as those
used for all the competing methods, for fairness. Indeed,
the paper [28] does not provide details as to the hyper-
parameter selection and use of validation data. According
to the GitHub repository, the authors mentioned that key
hyper-parameters (α and β in [28]), which control the trade-
off between the text and vision supervision, are both set to 1
as tuning baseline (see Issue #13 in the GitHub). They also
mentioned that α has to be increased when the domain gap
between the CLIP pre-trained model and the downstream
task is large. Starting from some initial values of the hyper-
parameters, with β set to 1 and α ∈ [1, 10] but predeter-
mined specifically for each dataset, the authors deployed an
additional search function after the adaptation procedure.
This function finds the best combination of α and β on
either the test set for ImageNet or the entire validation
set for the other 10 datasets, which invalidates the few-
shot assumption. Furthermore, the grid search intervals for
α and β vary significantly among the different datasets (and
somtimes do not even overlap), e.g., α ∈ [1.17, 7] for Ima-
geNet whereas α ∈ [10, 50] for Flowers102.

6https://github.com/gaopengcuhk/Tip- Adapter/
issues/13

https://github.com/gaopengcuhk/Tip-Adapter/issues/13
https://github.com/gaopengcuhk/Tip-Adapter/issues/13

Number of shots (S) 1 2 4 8 16

BMM (iterw=10, iterα=1) 63.43 66.20 69.16 72.04 74.42
BMM (iterw=10, iterα=10) 62.85 66.01 69.12 71.98 74.33
BCGD 62.92 66.04 69.03 71.94 74.24
GD (our Lipschitz cst) 63.04 66.14 69.15 71.99 74.28

Table 5. Comparison of different block-cycling strategies using
our initialization. BCGD corresponds to BMM with both iterw and
iterα equal to 1. GD (our Lipschitz cst) corresponds to the single-
block version of LP++. Results are averaged over 11 datasets.

Through our experiments, we found that the initial value
of α plays a substantial role in the final performance of the
Tip-Adapter-F model. Hence, for a fair comparison, we re-
evaluated Tip-Adapter-F* (Table 1) by (i) finding the ini-
tial value of αinit ∈ [1, 10] on the small validation set de-
ployed for all methods, and (ii) setting βinit = 1. Then,
we maintain the implementation of the original publica-
tion, and perform the final grid search after adaptation. In-
stead of employing a data-set specific range for these two
hyper-parameters, we use [αinit, 50] for α and [βinit, 50] for
β during grid search. Although these grid-search steps add
significantly to the overall computational overhead of TIP-
adapter, they are needed to achieve performances close to
those reported in the paper [28] (refer to Fig. 1 for a com-
parison between Tip-Adapter-F and Tip-Adapter-F*).

As for the training-free version of Tip-adapter [28],
which we evaluated in Table 3, we fixed these hyper-
parameters, i.e., α = β = 1, for a fair comparison with our
training-free LP++. Indeed, one could argue that searching
for these hyper-parameters on large validation sets would
invalidate the claim that the method is ‘’training-free”.

In addition to the mentioned flaws, the original imple-
mentation of [28] finds the best model using the perfor-
mance on the test set. In our re-implementation, we ad-
dressed this issue by applying early stopping on the small
validation set.

10. Ablation on the block-cycling strategies
Table 5 reports the performances for different block-cycling
strategies in our Block Majorize-Minimize (BMM) proce-
dure. For example, BMM (iterw=10, iterα=1) corresponds
to the LP++ version in Alg. 1, whose performance is re-
ported in the paper. GD corresponds to the single-block
MM version of LP++, and BCGD (Block Coordinate Gra-
dient Descent) corresponds the block-wise version of LP++
with both iterw and iterα equal to 1.

11. Method ranking
In Fig. 5, we show the ranking of different methods using
Autorank[12] (on the 11 datasets); lower value indicates
better performance.

LP
CoOp

Tip-Adapter-F
*

Tip-Adapter-F

Clip
-Adapter

PLOT

KgCoOp

ProGrad
LP++

1
2

4
8

16
sh

ot
s

8.5 6.6 2.6 5.4 6.9 4.5 4.4 2.6 3.5

8.5 5.8 3.3 6.5 6.5 3.6 5.3 2.8 2.6

8.3 5.4 3.5 6.5 6.9 3.5 5.7 2.7 2.5

7.9 4.5 4 5.8 6.6 3.1 7.3 3.1 2.7

7 4.4 4.2 4.3 6.5 3.8 7.7 4.5 2.5

Figure 5. The ranking of different methods using Autorank [12].
The results are averaged over 11 datasets.

12. Implementation of the L-BFGS optimizer
When assessing the standard LP as in Table 6, we follow
the instructions provided in [29], where the L-BFGS opti-
mizer is implemented by NumPy, and used to optimize the
standard CE loss jointly with L2 regularizers. As for the ab-
lation study in Table 2, all the optimizers are implemented
by Pytorch, including L-BFGS7. In this case, we did not use
regularizers, for fair comparisons.

13. Details of prompt design
We follow the same strategy as in [28] for the text prompts.
To be specific, we use the average of 7 templates per class
for ImageNet, while for the other datasets, we use a sin-
gle template. The latter might be different according to the
type of the images those datasets include. For example, for
Caltech101, we simply use “a photo of a [classk]” for each
class, while for Food101, we use “a photo of [classk], a type
of food” for each class.

14. Proof Lemma 2.1.
Assume a function L(v) is γ-smooth, i.e., its gradient is
Lipschitz (with a Lipschitz constant γ > 0): ∇2L(v) ⪯
γI, with I the identity matrix. From this condition on the
Hessian of L, it is easy to see that the following function
is convex: G(v) = γ

2v
tv − L(v). Using the first-order

condition for convexity of G gives:

G(v) ≥ G(vj) +∇G(vj)t(v − vj) (34)

Then using the expression of G and its gradient in Eq. (34)
yield the following quadratic upper bound on L, which cor-
responds to majorizing function M(v,vj) in the paper:

L(v) ≤ L(vj) +∇L(vj)t(v − vj) +
γ

2
∥v − vj∥2 (35)

By setting the derivative of this convex upper bound to zero,
we get the following solution, which corresponds to a spe-
cific gradient-descent step:

vj+1 = vj − 1

γ
∇L(vj) = argmin

v
M(v,vj) (36)

7https://github.com/hjmshi/PyTorch-LBFGS

https://github.com/hjmshi/PyTorch-LBFGS

Figure 6. Comparison of LP++ with different adaptation methods on 9 benchmarks, which are averaged over 10 tasks.

Applying Eq. (35) to v = vj+1, and plugging the gradi-
ent step in Eq. (36) into Eq. (35), one gets the following
decrease of objective L, by at least 1

2γ ∥∇L(vj)∥2:

L(vj+1) ≤ L(vj)− 1

2γ
∥∇L(vj)∥2 (37)

15. Proof Theorem 2.2.

The standard result in Theorem 2.2 provides, for a convex,
γ-smooth function, the convergence rate of gradient steps
with step sizes 1

γ . As L is convex, we have:

L(vj) ≤ L(v∗) +∇L(vj)t(vj − v∗) (38)

Plugging Eq. (38) in Eq. (37) yields:

L(vj+1)− L(v∗) (39)

≤ ∇L(vj)t(vj − v∗)− 1

2γ
∥∇L(vj)∥2

=
γ

2
(∥vj − v∗∥2 − ∥vj − 1

γ
∇L(vj)− v∗∥2)

=
γ

2
(∥vj − v∗∥2 − ∥vj+1 − v∗∥2) (40)

Summing both parts of the inequality in Eq. (39), we get:

J−1∑
j=0

(
L(vj+1)− L(v∗)

)
(41)

≤ γ

2

J−1∑
j=0

(∥vj − v∗∥2 − ∥vj+1 − v∗∥2)

=
γ

2
(∥v0 − v∗∥2 − ∥vJ − v∗∥2)

≤ γ

2
(∥v0 − v∗∥2) (42)

Finally, using the fact that L is decreasing at each iteration,
along with inequality Eq. (41), we have:

L(vJ)− L(v∗) ≤ 1

J

J−1∑
j=0

(
L(vj+1)− L(v∗)

)
≤ γ

2J
(∥v0 − v∗∥2) (43)

16. Additional numerical results on 11 bench-
marks

Tab. 6 shows the average accuracy and standard devia-
tion over 10 tasks for LP++ and the baseline methods on
11 benchmarks. The per-dataset performance across all the
methods and for different number of shots is depicted in
Fig. 6, which complements Fig. 3 in the main paper. In
these plots, one may observe that LP++ (green curve) yields
the best overall performance in 6 out of 11 data sets. Fur-
thermore, LP++ outperforms all adapter-based methods in
nearly all the remaining datasets and scenarios (i.e., when
varying the number of shots). Only in a few cases, e.g.,
FGVCAirCraft and OxfordPets, Tip-Adapter-F* yields a
performance better than LP++. Indeed, the largest improve-
ment gains are observed in FGVCAirCraft, where the ac-
curacy obtained by all methods is considerably small. We
believe that, in this particular scenario, the more intensive
grid search carried out by Tip-Adapter-F* has a greater im-
pact on its results. Considering prompt learning strategies,
ProGrad is the top-performing approach, which obtains the
best overall results in several datasets. Nevertheless, in ad-
dition to the limitations already highlighted for these meth-
ods (i.e., time complexity and non-suitability for black-box
adaptation), the large standard deviations observed across
runs (see also Fig. 1), make these approaches highly un-
reliable, specially in the low-labeled data regime. As dis-
cussed, this could be due to the fact that these approaches
learn prompts, through the text encoder, which are “too spe-
cialized” for a given image support set.

Dataset Number of shots (S) 1 2 4 8 16

ImageNet

Zero-shot CLIP ICML’21[23] 60.35
CoOp IJCV’22[29] 61.19 ± 0.17 61.58 ± 0.40 62.22 ± 0.22 62.87 ± 0.21 63.70 ± 0.13

PLOT ICLR’23[4] 60.46 ± 0.34 60.73 ± 0.60 61.79 ± 0.39 62.48 ± 0.32 63.08 ± 0.26

KgCoOp CVPR’23[27] 60.90 ± 0.16 61.44 ± 0.15 62.00 ± 0.11 62.20 ± 0.15 62.43 ± 0.11

ProGrad ICCV’23[30] 61.58 ± 0.27 62.14 ± 0.13 62.59 ± 0.09 63.04 ± 0.11 63.54 ± 0.18

CLIP-Adapter IJCV’23[9] 59.82 ± 0.11 59.94 ± 0.05 59.97 ± 0.04 59.98 ± 0.09 61.31 ± 0.39

Tip-Adapter-F ECCV’22[28] 60.59 ± 0.14 61.42 ± 0.05 62.12 ± 0.06 63.41 ± 0.07 65.06 ± 0.04

Tip-Adapter-F* ECCV’22[28] 60.98 ± 0.15 61.23 ± 0.11 61.72 ± 0.25 62.84 ± 0.10 64.03 ± 0.12

Standard LP ICML’21[23] 22.21 ± 0.31 31.96 ± 0.25 41.48 ± 0.25 49.49 ± 0.16 56.04 ± 0.13

LP++ 61.18 ± 0.08 61.56 ± 0.14 62.55 ± 0.12 63.76 ± 0.07 64.73 ± 0.05

SUN397

Zero-shot CLIP ICML’21[23] 58.85
CoOp IJCV’22[29] 61.79 ± 0.45 63.32 ± 0.47 65.79 ± 0.44 67.89 ± 0.38 70.15 ± 0.32

PLOT ICLR’23[4] 62.53 ± 0.30 63.87 ± 0.26 65.85 ± 0.48 67.83 ± 0.36 69.90 ± 0.31

KgCoOp CVPR’23[27] 62.91 ± 0.59 64.38 ± 0.30 66.06 ± 0.37 66.66 ± 1.10 67.68 ± 0.78

ProGrad ICCV’23[30] 62.79 ± 0.50 64.12 ± 0.55 66.32 ± 0.59 68.33 ± 0.28 70.18 ± 0.27

CLIP-Adapter IJCV’23[9] 60.78 ± 0.16 61.79 ± 0.23 63.84 ± 0.35 66.26 ± 0.14 67.66 ± 1.05

Tip-Adapter-F ECCV’22[28] 61.02 ± 0.36 62.15 ± 0.28 63.86 ± 0.19 67.25 ± 0.16 70.94 ± 0.13

Tip-Adapter-F* ECCV’22[28] 62.58 ± 0.22 63.79 ± 0.13 65.49 ± 0.35 67.43 ± 0.11 69.25 ± 0.16

Standard LP ICML’21[23] 32.56 ± 0.40 43.77 ± 0.41 54.49 ± 0.39 61.83 ± 0.30 67.03 ± 0.16

LP++ 62.47 ± 0.27 64.65 ± 0.25 67.28 ± 0.27 69.34 ± 0.14 71.23 ± 0.07

DTD

Zero-shot CLIP ICML’21[23] 42.69
CoOp IJCV’22[29] 42.31 ± 1.86 47.13 ± 1.93 54.06 ± 1.49 59.21 ± 0.91 63.67 ± 0.83

PLOT ICLR’23[4] 45.82 ± 1.72 51.32 ± 1.61 55.67 ± 1.14 61.38 ± 1.04 65.29 ± 1.05

KgCoOp CVPR’23[27] 45.46 ± 2.83 50.01 ± 2.71 53.37 ± 0.71 58.38 ± 1.34 62.71 ± 0.92

ProGrad ICCV’23[30] 44.19 ± 2.38 50.41 ± 1.74 54.82 ± 1.28 60.31 ± 0.99 63.89 ± 0.88

CLIP-Adapter IJCV’23[9] 43.49 ± 0.68 44.49 ± 1.07 48.95 ± 0.85 57.52 ± 0.67 62.97 ± 0.60

Tip-Adapter-F ECCV’22[28] 46.92 ± 1.01 48.50 ± 1.08 57.16 ± 0.53 62.38 ± 0.47 65.23 ± 0.82

Tip-Adapter-F* ECCV’22[28] 47.68 ± 1.43 52.24 ± 0.74 56.09 ± 0.99 61.05 ± 0.71 65.04 ± 0.21

Standard LP ICML’21[23] 29.63 ± 1.53 41.19 ± 1.45 51.72 ± 0.57 58.78 ± 0.52 64.56 ± 0.69

LP++ 46.97 ± 1.37 52.44 ± 0.99 57.75 ± 0.82 62.42 ± 0.53 66.40 ± 0.50

Caltech101

Zero-shot CLIP ICML’21[23] 85.84
CoOp IJCV’22[29] 87.06 ± 1.24 89.14 ± 0.87 90.00 ± 0.63 91.00 ± 0.66 91.77 ± 0.29

PLOT ICLR’23[4] 89.41 ± 0.41 90.22 ± 0.25 90.69 ± 0.37 91.55 ± 0.38 92.17 ± 0.30

KgCoOp CVPR’23[27] 88.24 ± 0.49 88.85 ± 0.43 89.89 ± 0.31 90.32 ± 0.43 90.93 ± 0.26

ProGrad ICCV’23[30] 88.34 ± 1.64 89.01 ± 0.61 90.13 ± 0.45 90.76 ± 0.32 91.67 ± 0.39

CLIP-Adapter IJCV’23[9] 87.69 ± 0.41 89.37 ± 0.29 90.21 ± 0.32 91.33 ± 0.15 92.10 ± 0.20

Tip-Adapter-F ECCV’22[28] 87.35 ± 0.64 88.17 ± 0.29 89.49 ± 0.25 90.54 ± 0.34 92.10 ± 0.25

Tip-Adapter-F* ECCV’22[28] 88.68 ± 0.44 89.36 ± 0.59 90.40 ± 0.26 91.62 ± 0.23 92.63 ± 0.21

Standard LP ICML’21[23] 68.88 ± 1.68 78.41 ± 0.54 84.91 ± 0.45 88.70 ± 0.40 91.14 ± 0.19

LP++ 88.56 ± 0.43 89.53 ± 0.35 90.87 ± 0.19 91.84 ± 0.24 92.73 ± 0.17

UCF101

Zero-shot CLIP ICML’21[23] 61.80
CoOp IJCV’22[29] 62.80 ± 1.26 65.62 ± 1.09 68.69 ± 0.76 72.57 ± 0.80 76.39 ± 0.54

PLOT ICLR’23[4] 63.22 ± 1.05 66.49 ± 0.92 70.12 ± 0.62 74.63 ± 0.79 77.39 ± 0.53

KgCoOp CVPR’23[27] 64.37 ± 1.66 64.91 ± 1.01 68.41 ± 0.38 69.86 ± 0.33 71.73 ± 0.78

ProGrad ICCV’23[30] 65.13 ± 0.87 66.57 ± 0.62 69.80 ± 0.62 73.01 ± 0.52 75.76 ± 0.47

CLIP-Adapter IJCV’23[9] 64.25 ± 0.54 66.68 ± 0.31 69.77 ± 0.40 73.90 ± 0.50 77.26 ± 0.39

Tip-Adapter-F ECCV’22[28] 64.28 ± 0.54 65.48 ± 0.43 67.61 ± 0.28 72.05 ± 0.53 77.30 ± 0.21

Tip-Adapter-F* ECCV’22[28] 65.50 ± 0.59 68.55 ± 0.45 70.55 ± 0.58 74.25 ± 0.48 76.83 ± 0.24

Standard LP ICML’21[23] 40.80 ± 1.05 51.71 ± 0.79 61.64 ± 0.50 68.47 ± 0.44 73.38 ± 0.43

LP++ 65.41 ± 0.37 69.20 ± 0.52 71.68 ± 0.41 74.86 ± 0.36 77.46 ± 0.39

Flowers102

Zero-shot CLIP ICML’21[23] 65.98
CoOp IJCV’22[29] 69.00 ± 2.44 78.47 ± 1.88 85.34 ± 1.69 91.68 ± 0.82 94.47 ± 0.36

PLOT ICLR’23[4] 71.09 ± 1.44 81.22 ± 0.92 87.61 ± 0.79 92.60 ± 0.55 95.18 ± 0.40

KgCoOp CVPR’23[27] 68.73 ± 1.97 69.63 ± 1.25 76.51 ± 0.51 80.71 ± 0.63 84.48 ± 0.70

ProGrad ICCV’23[30] 72.16 ± 1.74 79.55 ± 0.88 84.56 ± 1.41 91.73 ± 0.35 94.10 ± 0.41

CLIP-Adapter IJCV’23[9] 66.86 ± 0.73 69.71 ± 0.46 77.42 ± 0.60 87.20 ± 0.52 91.16 ± 0.23

Tip-Adapter-F ECCV’22[28] 67.73 ± 0.57 68.18 ± 0.84 71.17 ± 0.67 84.11 ± 0.49 93.02 ± 0.28

Tip-Adapter-F* ECCV’22[28] 78.46 ± 1.01 85.14 ± 0.81 88.53 ± 0.54 92.33 ± 0.32 94.26 ± 0.38

Standard LP ICML’21[23] 56.98 ± 1.56 73.40 ± 0.87 84.38 ± 0.53 91.81 ± 0.34 95.05 ± 0.29

LP++ 78.21 ± 1.01 84.69 ± 0.70 89.56 ± 0.45 92.61 ± 0.32 94.26 ± 0.24

StanfordCars

Zero-shot CLIP ICML’21[23] 55.78
CoOp IJCV’22[29] 57.00 ± 0.93 58.96 ± 0.78 62.81 ± 0.71 68.40 ± 0.61 72.87 ± 0.50

PLOT ICLR’23[4] 57.47 ± 0.58 59.89 ± 0.60 63.49 ± 0.80 68.75 ± 0.46 73.86 ± 0.39

KgCoOp CVPR’23[27] 57.19 ± 0.65 58.94 ± 0.33 59.85 ± 0.51 61.42 ± 0.40 62.99 ± 1.33

ProGrad ICCV’23[30] 58.63 ± 0.39 61.23 ± 0.65 65.02 ± 0.78 69.43 ± 0.40 72.76 ± 0.45

CLIP-Adapter IJCV’23[9] 56.67 ± 0.22 57.94 ± 0.27 61.13 ± 0.30 65.43 ± 0.10 70.24 ± 0.79

Tip-Adapter-F ECCV’22[28] 57.24 ± 0.23 58.12 ± 0.50 59.34 ± 0.20 64.25 ± 0.19 71.38 ± 0.23

Tip-Adapter-F* ECCV’22[28] 57.85 ± 0.33 60.55 ± 0.34 64.22 ± 0.52 68.75 ± 0.31 74.19 ± 0.30

Standard LP ICML’21[23] 22.94 ± 0.61 35.48 ± 0.51 47.49 ± 0.67 59.34 ± 0.30 69.11 ± 0.18

LP++ 57.20 ± 0.65 59.95 ± 0.36 63.44 ± 0.34 67.81 ± 0.24 72.33 ± 0.18

Table 6. Comparison to state-of-the-art methods. Average classification accuracy (%) and standard deviation over 10 tasks for 11
benchmarks, Best values are highlighted in bold.

Dataset Number of shots (S) 1 2 4 8 16

FGVCAircraft

Zero-shot CLIP ICML’21[23] 17.07
CoOp IJCV’22[29] 12.50 ± 6.16 17.59 ± 3.70 21.27 ± 2.54 26.85 ± 0.63 31.20 ± 0.40

PLOT ICLR’23[4] 17.75 ± 1.36 19.55 ± 0.99 22.26 ± 0.89 26.70 ± 0.70 32.09 ± 0.68

KgCoOp CVPR’23[27] 18.61 ± 0.76 18.93 ± 1.01 21.16 ± 0.82 22.80 ± 0.44 24.10 ± 0.59

ProGrad ICCV’23[30] 18.41 ± 0.98 20.51 ± 1.11 23.65 ± 0.50 26.98 ± 0.50 30.47 ± 0.76

CLIP-Adapter IJCV’23[9] 18.56 ± 0.20 19.18 ± 0.28 21.00 ± 0.21 23.76 ± 0.33 33.37 ± 0.23

Tip-Adapter-F ECCV’22[28] 18.23 ± 0.19 19.12 ± 0.20 20.55 ± 0.20 23.60 ± 0.29 30.37 ± 0.25

Tip-Adapter-F* ECCV’22[28] 19.08 ± 0.15 20.79 ± 0.59 23.99 ± 0.57 30.58 ± 0.29 36.16 ± 0.34

Standard LP ICML’21[23] 12.66 ± 0.59 16.92 ± 0.56 21.11 ± 0.83 26.53 ± 0.38 32.42 ± 0.54

LP++ 19.69 ± 0.39 21.58 ± 0.46 24.22 ± 0.60 27.73 ± 0.48 31.73 ± 0.44

EuroSAT

Zero-shot CLIP ICML’21[23] 36.22
CoOp IJCV’22[29] 40.36 ± 7.19 56.15 ± 5.82 66.13 ± 3.62 77.02 ± 1.78 82.59 ± 1.00

PLOT ICLR’23[4] 44.22 ± 9.14 64.19 ± 6.24 69.37 ± 3.26 78.84 ± 1.33 81.76 ± 1.43

KgCoOp CVPR’23[27] 43.86 ± 9.17 52.92 ± 5.92 59.51 ± 3.46 63.23 ± 3.03 64.04 ± 1.40

ProGrad ICCV’23[30] 49.37 ± 5.03 65.22 ± 4.01 69.57 ± 2.88 78.44 ± 1.69 82.17 ± 0.98

CLIP-Adapter IJCV’23[9] 43.00 ± 2.27 48.60 ± 2.76 59.15 ± 2.26 69.92 ± 1.49 75.38 ± 0.78

Tip-Adapter-F ECCV’22[28] 47.63 ± 2.64 57.62 ± 1.86 69.30 ± 2.41 75.22 ± 1.32 78.59 ± 1.48

Tip-Adapter-F* ECCV’22[28] 49.27 ± 2.88 65.66 ± 1.39 70.72 ± 2.73 74.66 ± 3.15 78.73 ± 0.81

Standard LP ICML’21[23] 48.29 ± 2.95 56.81 ± 2.93 64.99 ± 3.47 74.56 ± 0.98 80.29 ± 0.90

LP++ 57.23 ± 1.63 61.65 ± 1.66 68.67 ± 2.21 75.86 ± 0.99 80.53 ± 1.05

OxfordPets

Zero-shot CLIP ICML’21[23] 85.75
CoOp IJCV’22[29] 86.27 ± 1.17 86.33 ± 1.13 85.34 ± 1.69 87.85 ± 1.21 88.68 ± 0.71

PLOT ICLR’23[4] 87.15 ± 0.72 87.23 ± 1.21 88.03 ± 0.49 88.38 ± 0.64 88.23 ± 0.54

KgCoOp CVPR’23[27] 87.51 ± 0.68 87.51 ± 0.75 88.04 ± 0.46 88.59 ± 0.34 89.28 ± 0.21

ProGrad ICCV’23[30] 88.34 ± 0.65 87.88 ± 0.69 88.59 ± 0.58 88.87 ± 0.42 89.39 ± 0.47

CLIP-Adapter IJCV’23[9] 85.46 ± 0.48 86.37 ± 0.25 87.21 ± 0.51 87.95 ± 0.26 88.33 ± 0.33

Tip-Adapter-F ECCV’22[28] 85.70 ± 0.16 86.05 ± 0.46 86.40 ± 0.29 87.66 ± 0.28 89.08 ± 0.27

Tip-Adapter-F* ECCV’22[28] 86.05 ± 0.36 86.49 ± 0.61 87.19 ± 0.36 87.89 ± 0.34 88.26 ± 0.37

Standard LP ICML’21[23] 30.62 ± 1.61 42.64 ± 2.03 55.60 ± 0.98 67.32 ± 0.98 76.23 ± 0.38

LP++ 84.24 ± 1.36 85.74 ± 0.56 86.94 ± 0.48 87.71 ± 0.65 88.38 ± 0.61

Food101

Zero-shot CLIP ICML’21[23] 77.35
CoOp IJCV’22[29] 75.58 ± 1.29 77.49 ± 0.41 77.93 ± 0.58 78.92 ± 0.19 79.21 ± 0.36

PLOT ICLR’23[4] 77.46 ± 0.55 77.72 ± 0.26 78.23 ± 0.25 78.40 ± 0.35 78.86 ± 0.19

KgCoOp CVPR’23[27] 77.20 ± 0.77 78.04 ± 0.18 77.97 ± 0.28 78.39 ± 0.40 78.73 ± 0.23

ProGrad ICCV’23[30] 78.36 ± 0.41 78.01 ± 0.70 78.38 ± 0.87 79.11 ± 0.18 79.51 ± 0.23

CLIP-Adapter IJCV’23[9] 76.93 ± 0.19 77.22 ± 0.15 77.64 ± 0.17 77.97 ± 0.22 78.45 ± 0.14

Tip-Adapter-F ECCV’22[28] 77.53 ± 0.14 77.53 ± 0.22 77.82 ± 0.27 78.26 ± 0.22 78.99 ± 0.15

Tip-Adapter-F* ECCV’22[28] 77.58 ± 0.10 77.36 ± 0.39 77.78 ± 0.15 78.17 ± 0.11 78.72 ± 0.06

Standard LP ICML’21[23] 31.59 ± 1.20 44.60 ± 1.03 56.13 ± 0.63 64.45 ± 0.55 70.97 ± 0.19

LP++ 76.61 ± 0.77 77.22 ± 0.55 77.79 ± 0.34 78.53 ± 0.14 78.88 ± 0.19

Table 6. Comparison to state-of-the-art methods (Continued). Average classification accuracy (%) and standard deviation over 10 tasks
for 11 benchmarks, Best values are highlighted in bold.

	. Proof of Prop. 1
	. Proof of Proposition 2
	. More details on the initialization
	. More details on the training-free version of our method
	. Detailed explanation of the flaw in the experimental evaluation of TIP-adapter zhang2022tip
	. Ablation on the block-cycling strategies
	. Method ranking
	. Implementation of the L-BFGS optimizer
	. Details of prompt design
	. Proof Lemma 2.1.
	. Proof Theorem 2.2.
	. Additional numerical results on 11 benchmarks

