Make-Your-Anchor: A Diffusion-based 2D Avatar Generation Framework

Supplementary Material

A. Related Work
A.1. Talking Face Generation

Talking face generation methods [6, 19, 28, 35] generate
human videos with various expressions and poses condi-
tioned on a given audio or motion, which can be catego-
rized into two types: editing facial regions or generating
dynamic head videos. Editing-based techniques, such as
Wav2Lip [19] or VideoRetalking [6], face the problem of
lip-gesture inconsistency. Usually, the gestures are fixed for
different talking content. Generating dynamic head video
requires methods to create head videos conditioned on given
audio or motion, where head motions are accomplished
by different manners such as motion flow [34], 3D land-
marks [28, 35], self-supervised training [18], etc. Although
producing high-quality and highly realistic facial videos,
talking face generation is limited by its interest area and
cannot achieve full-body human video generation.

A.2. Pose-guided Human Video Generation

To generate human video with body and hand, pose-guided
methods are the most popular approaches. Early work
focuses on the problem of motion transfer [1, 4, 15, 23—
25, 29, 31, 36] methods. Balakrishnan et al. [1] separate a
scene and transform each part to synthesize. FOMM [23]
and MRAA [24] propose unsupervised body representation
and warping to transfer, while LIA [29] employs latent
space. TPS [36] introduces thin plate spline transformation
into a motion transfer task, and UVA [25] presents a
differential volumetric representation. Besides the coarse-
grained motion transfer setting, researchers [9, 14, 21, 37]
apply these kinds of methods into human video generation
with face, body, and hand. However, constrained to the ca-
pability of these models, these methods potentially generate
human videos with apparent artifacts.

With the progress of diffusion models [11, 22], some
works introduce them into pose-guided human video gen-
eration. Follow-your-pose [17] introduces a two-stage
training to get a pose-guided video diffusion model. Dream-
Pose [13] proposes a vision and pose controlled diffusion
on fashion dataset to animate a body image. DisCo [27]
focuses on human dance generation, utilizes multiple Con-
trolNet on pose and background, and introduces a pre-
training strategy to improve generalizability. Nonetheless,
these methods concentrate on coarse-grained body video
generation, which is limited to the poor quality of face and
hands. Besides, due to the randomness of the diffusion
model, these methods struggle with temporal consistency.
The proposed system, by proposing a simple yet efficient

multi-frame inference strategy, could improve the temporal
consistency of image-based diffusion models.

A.3. Video Diffusion Models

Due to the powerful capabilities of diffusion models, re-
searchers in recent years have started to explore their poten-
tial in video generation, and much progress has been made
in video generation [2, 5, 8, 12, 26] and video editing [3, 20,
32]. GEN-1 [7] extends the image diffusion model with a
temporal module and utilizes depth to control the structure.
Tune-A-Video [30] fine-tunes 3D U-Net in image diffusion
model on a one-shot video to learn the motion and then
edits the video content with text prompts. AnimateDiff [10]
trains a temporal module with a fixed image diffusion model
and can be applied to personalized weights. While VDMs
possess strong video generation capabilities, the ability
to control human motion and maintain appearance needs
further improvement. In contrast, we tune the foundation
diffusion model to learn the mapping from motion to a
specific anchor appearance in a “binding” fashion following
a pretrain-finetuning paradigm.

B. Video Results

We show video results in the project page https://
github.com/ICTMCG/Make-Your—Anchor. In the
videos, we compare with SOTA methods as well as present
the results of ablation studies. Video results demonstrate
the effectiveness of the proposed method. For example,
we could observe slight flicking frames in the video results
without overlapped batches. This is due to the absence
of information transfer between different batches and the
inherent randomness of the diffusion model, resulting in
subtle variations in human structure across batches. The
proposed overlapped-batch design in the denoising pro-
cess allows for certain context exchanges between dif-
ferent batches, thereby reducing the occurrence of this
phenomenon.

Furthermore, we show the results of audio-driven digital
avatar generation. We utilize TalkSHOW [33] to drive
the 3D human mesh, and the examples are shown in the
video as well as Fig. SI. By combining our method
with existing audio-driven motion generation techniques,
we create a system capable of automatically generating 2D
avatar videos.

C. User Study

We conduct user studies under our experimental setting in
the main text. The videos generated in Section 5.2 were
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Figure S1. Examples of audio-driven results.

collected, and we invited 30 participants to operate this
user study. For each participant, 15 video instances are
randomly sampled from all results, and the corresponding
reference appearance and input pose sequence are shown
simultaneously. For each instance, we asked participants
to rate from four aspects: appearance preservation, tempo-
ral consistency, structure preservation, and overall quality.
Appearance preservation measures the appearance between
the reference image and the generated video. Structure
preservation is asked to evaluate the structure similarity
between input pose and output video, especially for hand
structure. The rating score of each question is on a scale
from one to five, with five being the highest score and one
being the lowest.

The statistics are listed in Table S1. As the results show,
our method achieves the best scores of over four points
in the user study. Pose2Img scored above three points in
appearance preservation, and the results from Dreampose
and DisCo are slightly inferior to Pose2Img. Our method
has achieved a significant advantage in structure preserva-
tion compared to other methods, which is not apparent by
LMD in Table 1 of the main text for inaccurately estimated
landmarks.

Appearance Temporal Structure Overall
Method . . . .

Preservation Consistency Preservation Quality
Pose2Img [21] 3.36 2.38 1.59 2.01
TPS [36] 2.03 2.10 1.18 1.37
DreamPose [13] 2.78 1.94 2.27 1.94
DisCo [27] 2.29 2.32 1.45 1.72
Ours 4.23 3.85 391 4.03

Table S1. User study scores. The rating score is on a scale from
one to five, where five is the highest score, and one is the lowest.

D. Ablation on Video Length

We conducted an analysis of the required duration for video
data needed for fine-tuning. Compared to the one-minute
videos used in the main text, we utilize five-minute videos
in the fine-tuning stage. The quantitative results are demon-
strated in Table. S2 and the qualitative results are displayed
in Fig. S2. The numerical results demonstrate a slight
improvement in all measurements. For instance, with LMD
(hand), additional data allows the model to encompass a
broader range of angles, enabling more accurate generation
outcomes, and showing better results. In qualitative results,
one minute of fine-tuning data already yields satisfactory
outcomes.

Frame3 Frame4

Framel Frame?2

(b) Fine-tuning with five-minute videos

Figure S2. Qualitative results with different video lengths for fine-
tuning.

Fine-tuning with FID| FVD| LMD (Face)l LMD (Body)! LMD (Hand)|

One-minute videos  40.33  139.82 1.44 4.88 5.41
Five-minute videos  38.94  134.55 1.29 4.42 4.95

Table S2. Ablation analysis of video length used for fine-tuning.

E. Additional Time Cost.

Time cost of different methods is shown in Table S3.
Our method is comparable to other diffusion methods.
Most time is spent on diffusion. Off-the-shelf speed-up
approaches such as LCM [16] could be further engaged.

In Algorithm 1, count is an array storing the computing
counts for each frame, where only overlapped frames are
calculated twice times. When the ws = 16 and os = 4
for 300 frames/10s to generate, the total computing times
in count is 400, which means an additional one-third
of the cost. The additional time cost brings consistency
between batches to generate long duration. A comparison of
time cost and ablation without batch-overlapped temporal
denoising (TD) is listed in Table. S3.



Method Pose2Img TPS DreamPose  DisCo Ours Ours w/o TD 300 frames w/o TD
Time cost 77s 42s 310s 154s 407s 301s. OOM
Method type  non-diffusion  non-diffusion diffusion diffusion  diffusion diffusion diffusion
Resolution 640px 384px 512px 256px  512px 512px 512px

Table S3. Comparison of time cost to generate 300 frames.

Method FID FVD] LMD (Face)|
Ours 40.33  139.82 1.44
FE w 512px 39.73 140.18 1.35

Table S4. Numerical results of FE with 512px.

F. High-Resolution FE Model

We observed that our method sometimes generate inaccu-
rate lip and expression movements, this could be dated back
to the mouth’s small size which constrains face enhance-
ment’s ability. We make a improvement that training a
higher-pixel model from 256px to 512px. As in Fig. S3
and Table S4, the lip and expression movements becomes
accurate and the quality of the face region is enhanced.

Figure S3. Improved FE. Left 256px, right 512px. Click the last
image to play the embedded clips with Acrobat Reader.

G. Liminations

The generated video results are based on the input 3D
mesh sequence. When the input mesh sequence is of large
pose variations or even inaccurate, the visual quality of the
results will be decreased. As shown in Fig. S4a, when the
driven facial pose largely varies from the training data, the
generated facial expressions are unsatisfactory. It could be
improved with more fine-tuning data as shown in Section D.
Furthermore, due to limitations in the precision of motion
capture, especially regarding the accuracy of hand capture,
some obtained motion meshes exhibit inaccuracies. As
shown in Fig. S4b, when the input mesh is inaccurate, the
generated frame is confusing. The inaccurate meshes are
reflected in the results, leading to phenomena such as limb
misalignment.

H. Border Impacts

Our method could be used maliciously to create DeepFake
videos, which may bring adverse social impacts. We
deeply understand the possible negative influence of human
video generation technology, and will strictly prevent the
spread of our method. Nevertheless, we believe that our
approach can yield positive societal impacts, particularly in
applications within fields such as education, entertainment,
healthcare, and e-commerce.
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Figure S4. Limitations. When the driven mesh is of large variation
or inaccurate, the generated frame will be unsatisfactory.
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