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Supplementary Material

In this Appendix, we first introduce the detailed network
architecture of each module for our method as well as train-
ing and inference parameters in Section 1. We then pro-
vide the formal definition of the coarse-level loss function
in Section 2. More visualization results are shown in Sec-
tion 4. We further conduct an ablation study on the verifi-
cation and refinement method in Section 3. Finally, more
discussions about the failure cases and limitations are pro-
vided in Section 5.

1. Implementation Details

1.1. Network Architecture

As shown in Figure 1, our network consists of two 3D back-
bones that perform encoding and decoding for the CAD
points and depth points respectively, one 2D backbone that
embeds textural information from RGB images, and one La-
tent Fusion Attention Module proposed to fuse the 2D and
3D cues in the coarse-level latent space.

3D Backbone. We adjust RoITr [12] network as our 3D
backbone to extract rotation-invariant point descriptors for
both the CAD and depth point clouds. For each observed
depth image, we sample at most 2048 points as the target
point cloud and the same number is applied for sampling
points from the CAD model surface as the source point
cloud. The 3D encoder-decoder architecture is based on
the Point Pair Feature Transformer (PPFTrans). Our point
cloud encoder consists of 4 blocks, as shown in Table 1,
each block consists of an Attentional Abstraction Layer
(AAL) for downsampling and abstraction and a PPF Atten-
tion Layers (PALs) for local geometry encoding and context
aggregation. Both layers are in the same design with RoITr.
We use the stride of 1,4, 2, and 2 for the encoder blocks
respectively. The encoder blocks finally down-sample the
point clouds into 128 superpoints with 256 feature dimen-
sions. The decoder is also built by 4 blocks, as shown in
Table 2, each block is made of a Transition Up Layer (TUL)
that performs upsampling and context aggregation, as well
as a PAL which enhances the highly-representative learned
context.

2D Backbone. For learning the textural information
from the RGB images, we follow the implementation of
LoFTR [8] and use a modified ResNet18 [2] as the 2D back-
bone network. It consists of 3 convolutional blocks which
down-sample the input image into W

2 × H
2 , W

4 × H
4 , W

8 × H
8

feature maps respectively. The feature map with resolution

Stage Block Operation

Input P ∈ Rn×1

Encoder

Blocke
1(P ) → P1

AAL(n× 1) → n× 64
PAL(n× 64) → n× 64

Blocke
2(P1) → P2

AAL(n× 64) → n/4× 128
PAL(n/4× 128) → n/4× 128

Blocke
3(P2) → P3

AAL(n/4× 128) → n/8× 256
PAL(n/8× 256) → n/8× 256

Blocke
4(P3) → P ′ AAL(n/8× 256) → n/16× 256

PAL(n/16× 256) → n/16× 256

Output P ′ , ϕp′

Table 1. Detailed architecture of our 3D encoder.

Stage Block Operation

Input P ′ ∈ Rn/16×256

Decoder

Blockd
4(P

′) → P̂4
TUL (n/16× 256) → n/16× 256
PAL: n/16× 256 → n/16× 256

Blockd3(P̂4, P3) → P̂3
TUL(n/16× 256, n/8× 256) → n/8× 256

PAL(n/8× 256) → n/8× 256

Blockd2(P̂3, P2) → P̂2
TUL(n/8× 256, n/4× 128) → n/4× 128

PAL(n/4× 128) → n/4× 128

Blockd
1(P̂2, P1) → P̂

TUL(n/4× 128, n× 64) → n× 64
PAL(n× 64) → n× 64

Output P̂ , ϕp

Table 2. Detailed architecture of our 3D decoder.

of W
8 × H

8 × 256 is then flattened and encoded with the po-
sitional embeddings. Same as LoFTR, the 2D extension of
the absolute sinusoidal positional encoding is adopted. Fi-
nally, the superpixels from 2D branch are further fused with
the obtained 3D superpoint features by the proposed Latent
Fusion Attention Module.

Global Transformer. We aggregate the global context
with a Global Transformer proposed in [? ]. It consists
of 3 blocks, each block is a sequence of a geometry-aware
self-attention module (GSM) and a position-aware cross-
attention module (PCM). The global transformer encodes
the spatial cues from both CAD and depth point clouds and
enhances the geometric features for both sides.

Latent Fusion Attention Module. As introduced in the
main text, our Latent Fusion Attention Module consists
of two types of transformers, i.e. Fusion Transformer and
Global Transformer. The detailed network structure of this
module is shown in the right part of Figure 1. For the global
transformers, we follow the design of [? ]. It consists of
3 blocks, each block is a sequence of a geometry-aware
self-attention module (GSM) and a position-aware cross-
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Figure 1. The detailed network architecture of our model.

attention module (PCM). The global transformer encodes
the spatial cues from both CAD and depth point clouds
and enhances the geometric features for both sides. For
the fusion transformers, We follow [8] to design the at-
tention layers and use 4 self- and cross-attention layers in
each transformer block. In the Latent Fusion Attention
Module, we obtain the features of 2D and 3D in differ-
ent fusion branches. For 3D-to-2D fusion branch, we first
use a global transformer to aggregate the cross-frame con-
text between CAD and depth superpoints, then we fuse the
obtained global-aware depth and CAD superpoint features
with the 2D local features respectively, from which we ob-
tain the fused 2D superpixel features ϕ̃K′

. For 2D-to-3D
fusion branch, we first encode 2D features into CAD and
depth superpoint features respectively, then we aggregate
the fused CAD and depth features with a global transformer
and obtain the global-aware 3D superpoint features ϕ̃P ′

and
ϕ̃Q′

.

1.2. Training and Inference Parameters

During training, all the objects are normalized into a sphere
with a radius of 0.1m, and we let λr to be 0.01 and 0.005 for
coarse and fine matching respectively. We set λb as 0.3 and
γc as 0.5 by default, and adopt an Adam [3] optimizer with
an initial learning rate of 1e-4, which is exponentially de-
cayed by 0.05 after each epoch. We train our model around
1M iterations with a batch size of 2 on two RTX4090 GPUs,
while the model is tested without CPU parallel and with a
batch size of 1. During inference, we set κ = 128, s = 64
and η = 20 by default. For the testing under the condi-
tion of unseen object localization, we adopt a CAD-based

novel object segmentation method [6] to localize the ob-
jects in our input RGB-D images. For the evaluation of 6D
pose with instance-level localization, we take the existing
detection results from the methods [1, 5, 10]. To boost the
performance, we scale up η = 64 to achieve more accurate
results in comparison to some baselines[4, 13]. In all the ex-
periments, we select 128 superpoint correspondences with
the highest confidence scores as the coarse-level superpoint
matching.

2. Loss Function
We explain the detailed Circle Loss [9] for the coarse-level
matching between the superpoints and superpixels. The Cir-
cle Loss re-weight each similarity score under supervision,
and is compatible with both class-level labels and pair-wise
labels. Following [7], we use the overlaps between the cor-
responding superpoints as the similarity re-weighting score.
For each superpoint p′i ∈ P ′, and q′j ∈ Q′, we can calculate
the overlap V between p′i and q′j as:

V(p′i, q′j) =
|{p̂′u ∈ P̂ ′

i | ∃ q̂′v ∈ Q̂′
j : p̂

′
u ↔ q̂′v}|

|{p̂′u ∈ P̂ ′
i}|

, (1)

where ↔ denotes the correspondence relationship. P̂ ′
i is

the group of points from P ′ assigned to p′i by Point-to-Node
grouping strategy [11], and Q̂′

j means the same for Q′.
A pair of superpoints p′i and q′j are considered as a posi-

tive pair if and only if V(p′i, q′j) > τr, where τr is the thresh-
old of the overlap. We sample a positive set of superpoints
from Q′, denoted as EP

i = {q′j ∈ Q′ | V(p′i, q′j) > τr}, and
a negative set of superpoints FP

i = {q′j ∈ Q′ | V(p′i, q′j) =



0}. Then for P ′, the coarse-level superpoint matching loss
is computed as:

LP ′

c =
1

n′

n′∑
i=1

log[1+ (2)∑
q′j∈EP

i

exp(vji β
i,j
e (dji −∆e))

∑
q′k∈FP

i

exp(βi,k
f (∆f − dki ))],

with vji = V(p′i, q′j) and dji = ∥ϕ̃p′
i
− ϕ̃q′j

∥2. ∆e and ∆f are

the positive and negative margins. βi,j
e = γ(dji −∆e) and

βi,k
f = γ(∆f −dki ) are the weights individually determined

for different samples, with γ as a hyper-parameter. This
Circle Loss minimizes the corresponding latent features
and maximizes the incorresponding features among the su-
perpoints and superpixels, establishing the cross-modality
matches on coarse-level latent space.

3. Verification and Refinement

As introduced in the main text, our model is able to pro-
duce multiple pose hypotheses from the correspondences.
We consider the availability of 2D RGB images and 3D
point clouds information and employ both of them to per-
form verification for our pose hypotheses. As for 3D, we
calculate the one-directional chamfer distance between the
transformed CAD model and the lifted depth map as the
score of 6D pose estimation. Specifically, we first trans-
form the CAD point cloud with our predicted pose hypothe-
ses respectively. For each point in the CAD points, we find
the nearest point in the depth points and then measure the
Euclidean distance between the CAD point and its nearest
reference point. Finally, the pose hypothesis with the small-
est mean distance over the CAD points is considered to be
the final prediction. However, this measurement is not accu-
rate because a low 3D point-distance-based score does not
guarantee an accurate pose. As a complementary option,
we also consider using 2D information as verification. We
adopt a pre-trained scoring network the same as [4]. It takes
a pair of RGB image crop and its coarse 6D pose predic-
tion as input and estimates a confidence score for each in-
put pair. Training with a large amount of image-pose pairs,
this simple deep network is able to reject the outlier pose
predictions. In addition to the 2D and 3D verification, we
further boost the performance with a standard ICP proce-
dure. In Table 3, we evaluate the effect of RGB verification
and ICP refinement for our method on LM-O dataset. We
observe that the RGB verification can help reject the outlier
hypotheses, and ICP can refine our estimated poses even
further. By adopting both the RGB verification and ICP re-
finement, our method achieves the best performance.

RGB Verification ICP AR
56.2

✓ 61.1
✓ 63.5

✓ ✓ 64.4

Table 3. Ablation study on verification and refinement of our
method on LM-O dataset.

4. More Qualitative Results
We show more qualitative results on TUD-L, IC-BIN and
YCB-V datasets in Figure 3, 4, and 5 respectively.

5. Limitations
Failure Cases. We show some of our failure cases in Fig-
ure 2. Our method fails to predict the objects in the first two
columns because of different levels of external occlusion,
which are reasonable since the observed part is limited by
the viewpoint in both texture and depth. In the third col-
umn, the orientation of the banana is wrong although the
predicted partial pose is well-aligned. This is because the
distinctive part is unseen and causes ambiguity when match-
ing the partial observation. We expect this ambiguity can be
solved by increasing the resolution of our descriptors. An-
other failure case is shown in the fourth column, our method
predicts the pose of the milk box upside down without ex-
ternal occlusion, which happens because of the highly sym-
metric texture and geometry presented in the observed part,
introducing ambiguity when matching the descriptors with
high similarity.

Further Discussions. Our method produces generic de-
scriptors by fusing the 2D textural and 3D geometric infor-
mation in the latent space. It captures the symmetry distri-
bution automatically without external annotation. However,
our method still needs further improvement in the verifi-
cation of the correspondences and poses, especially when
matching those highly symmetric objects that present simi-
lar features. Feasible solutions could be introducing a spa-
tial consistency mechanism to filter out ambiguous corre-
spondences or some learning-based and graph search meth-
ods. By puring the correspondences, higher quality of the
pose hypotheses can be produced. On the other hand, in-
stance mask prediction can also be involved in our pipeline
by adding an additional output channel in our 2D branch,
while multi-task training may also cause potential risks for
representation learning. Finally, directly matching the ob-
jects to a raw scene without detection or segmentation is
also a challenging and interesting direction for future re-
search.

Object 6 DoF pose estimation is a crucial aspect in the
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Figure 2. Failure case visualization of our method.
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Figure 3. Visualization results of our method on TUD-L dataset.
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Figure 4. Visualization results of our method on IC-BIN dataset.

realms of computer vision and robotics, which has wit-
nessed considerable attention, particularly with the advent
of deep learning methodologies. Recent years have seen
the emergence of diverse techniques, encompassing 2D-3D
or 3D-3D descriptor-matching approaches, template-based
methods, direct-regression methods, etc. However, chal-
lenges persist in scenarios involving textureless objects, oc-
clusion, and cluttered backgrounds. This thesis introduces
a novel pose estimation method based on diffusion models,
which have demonstrated notable success in image synthe-
sis tasks. The objective is to leverage the strengths of dif-
fusion models, such as their scalability to large-scale data
and the diversity of generation, to address the complexi-
ties inherent in 6 DoF pose estimation. A comprehensive
diffusion framework is proposed, utilizing a single RGB-D
image to generate multiple hypotheses for the 6 DoF pose
of an object. The proposed method is rigorously evaluated
on real-world datasets featuring noise and occlusion. Re-
sults indicate that our approach achieves comparable per-
formance with state-of-the-art methods, highlighting its ef-
fectiveness in challenging scenarios. This study not only
contributes a novel perspective to pose estimation but also
underscores the potential of diffusion models in advancing
the state of the art in this critical domain.
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Figure 5. Visualization results of our method on YCB-V dataset.

and Rudolph Triebel. Multi-path learning for object pose es-
timation across domains. In CVPR, 2020. 2

[11] Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slobo-
dan Ilic. Cofinet: Reliable coarse-to-fine correspondences
for robust pointcloud registration. In NeurIPS, 2021. 2

[12] Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li,
Benjamin Busam, and Slobodan Ilic. Rotation-invariant
transformer for point cloud matching. In CVPR, 2023. 1

[13] Heng Zhao, Shenxing Wei, Dahu Shi, Wenming Tan,

Zheyang Li, Ye Ren, Xing Wei, Yi Yang, and Shiliang Pu.
Learning symmetry-aware geometry correspondences for 6d
object pose estimation. In ICCV, 2023. 2


