
Supplementary Materials
PBWR: Parametric Building Wireframe Reconstruction from Aerial LiDAR

Point Clouds

Shangfeng Huang1, Ruisheng Wang1,*, Bo Guo2, Hongxin Yang1

1University of Calgary, 2Guangdong University of Technology
{shangfeng.huang, ruiswang, hongxin.yang}@ucalgary.ca, guobo.lidar@gmail.com

Figure 1. Building reconstruction results of Tallinn city



1. Visualization of building reconstruction in
Tallinn City

The building wireframe reconstruction result of Tallinn
city comprising 36,084 buildings is shown in Fig. 1. We
also provide close-up views of three specific regions to
show effectiveness of the reconstruction .

2. Edge Non-Maximum Suppression (E-NMS)

Algorithm 1 shows the pseudo-code for the proposed E-
NMS algorithm, incorporating the edge similarity function
in bipartite edge matching and edge precision evaluation.

3. Quantitative Comparison Between PBWR
and Traditional Methods

Tab. 1 shows quantitative results between traditional
methods and PBWR. The corresponding visual results can
be found in Fig. 4 in our paper. Specifically, Tab. 1 demon-
strates that our PBWR outperforms compared traditional
methods. The PBWR can represent building detail with
fewer faces, and represent architectural intricacies with less
storage space.

Algorithm 1: Edge Non-Maximum Suppression
(E-NMS) Algorithm

Input: List of edges E, corresponding confidences
C, Edge similarity threshold τ

Output: List of filtered edges Ê
1 Sort the edges E based on confidences C in

descending order;
2 Define Hausdorff Distance function Hd(ei, ej);
3 Define Direction Similarity function Dirsim(ei, ej);
4 Define Length Similarity function Lensim(ei, ej);
5 Edge Similarity function

Edgesim(ei, ej) = 2 ∗Hd(ei, ej) + 0.5 ∗
Dirsim(ei, ej) + 0.5 ∗ Lensim(ei, ej);

6 Initialize an empty list Ê to store selected edges;
7 while E is not empty do
8 Select the edge e with highest confidence from

E;
9 Add e to Ê;

10 Remove e from E;
11 for each edge e′ in E do
12 if Edgesim(e, e′) < τ then
13 Remove e′ from E;
14 end
15 end
16 end

4. Method Details

4.1. Input Embedding Module

In the Input Embedding module, we use a robust aggre-
gation method [4] that learns local structural features. The
MLP (Multi-Layer Perceptron) is employed to aggregate lo-
cal features and output embedding features in 256 channels.

4.2. Transfromer Encoder and Decoder

The standard Transformer with self-attention mechanism
[5] is employed. Specifically, the Transformer Encoder con-
sists of six feature encoder layers, each comprising a self-
attention and a feed-forward layer. The embedding feature
Fembed, which already incorporates positional information
from the XYZ coordinates, is input into the Transformer En-
coder to extract individual point features Fen ∈ RN×Cen .
The Transformer Decoder includes six feature decoder lay-
ers, with each layers containing a self-attention, multihead-
attention and feed-forward module.

4.3. Edge Similarity and Loss Function

Based on experimental results, the balance coefficient
α, β, γ of edge similarity are set to 2, 0.5, 0.5, respectively.
The balance coefficient λmid, λcomp, λcon, λquad and λsim

are set to 5, 1, 1, 2 and 2, respectively.

5. Experimental Details

5.1. Building3D Dataset Processing

The original coordinates of point clouds in the dataset
are normalized to a range between -1 m and 1 m before
training. Moreover, the data undergoes random augmenta-
tion employing strategies delineated in the paper. The ACO
(Average Corner Offset) metric is calculated from the re-
sults after reverting the normalization process. Specifically,
for the Entry-level dataset, the ACO derived from normal-
ized data stands at 0.03 m. However, after performing the
reverse normalization process, the calculated ACO rises to
0.22 m. We believe that the reverse normalization process
magnifies the ACO error, which can be mitigated or elimi-
nated in future work.

5.2. Implementation Details

During the experiments, the threshold of edge similarity
τ was set at 0.15. The threshold of confidence score during
training was set to 0.5, but it was set to 0.7 during evaluation
to determine whether an edge is a positive edge or not. The
model was trained with a batch size of 20, using a single
NVIDIA A6000 graphics card. The training time for the
entry-level dataset is approximately one day, but it extends
to six days for the Tallinn city dataset.



Building

RMSE (m) ↓

2.5D Dual [3] 0.051 0.086 0.093 0.072 0.113 0.111 0.144 0.111 0.140
Topology Aware [1] 0.164 0.777 0.718 0.235 0.568 0.483 1.177 5.248 2.019

City3D [2] 2.362 0.008 0.092 0.027 0.050 0.041 0.529 0.627 0.061
PBWR 0.054 0.002 0.084 0.042 0.059 0.053 0.074 0.054 0.086

3D IOU ↑

2.5D Dual [3] 0.786 0.636 0.738 0.4772 0.524 0.421 0.313 0.192 0.283
Topology Aware [1] 0.441 0.460 0.420 0.435 0.471 0.505 0.658 0.268 0.204

City3D [2] 0.754 0.942 0.952 0.940 0.966 0.888 0.721 0.973 0.905
PBWR 0.969 0.961 0.960 0.949 0.962 0.982 0.966 0.977 0.965

Number
of Faces ↓

2.5D Dual [3] 136 384 239 68 124 152 628 468 163
Topology Aware [1] 5483 2056 985 562 132 2204 1484 1334 2869

City3D [2] 58 216 289 72 336 80 161 290 180
PBWR 30 24 19 9 24 9 9 17 20

Table 1. Quantitative comparison. The quantitative results between traditional methods and PBWR in terms of RMSE (Root Mean
Square Error), 3D IOU (Intersection over Union), and number of faces.

6. Model Generalization
The Building3D dataset provides additional aerial Li-

DAR point clouds without corresponding wireframe mod-
els in specific Estonian cities. We leverage this data
to evaluate PBWR’s generalization capability. Specifi-
cally, we use aerial point clouds from four small Estonian
cities—Hiiumaa, Keila, Loksa, and Sillamae—to assess
PBWR’s performance. Among these, Hiiumaa comprises
2,863 buildings, Keila encompasses 2,909 buildings, Loksa
includes 1,010 buildings, and Sillamae consists of 2,011
buildings. Fig. 2 shows visualization results of Hiiumaa
data. Fig. 3 and Fig. 4 depict visualization results of Keila
data. Fig. 5 presents visualization results of Loksa data,
while Fig. 6 shows visualization results of Sillamae data.
Based on the visualized results, our model exhibits general-
ization across diverse cities.

7. More Visualization Results
Fig. 8 and Fig. 7 present additional visualized results of

Tallinn City data, offering a more intuitive observation of
the model’s performance. In addition, we provide compar-
ative visualization between prediction and ground truth in
the fourth and final columns.
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Figure 2. Model generalization.Visualization results of Hiiumaa city data.
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Figure 3. Model generalization.Visualization results for Keila city data.
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Figure 4. Model generalization.Visualization results of Keila city data.
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Figure 5. Model generalization.Visualization results of Loksa city data.
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Figure 6. Model generalization.Visualization results of Sillamae city data.
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Figure 7. PBWR-Tallinn Visualization Results in Tallinn City
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Figure 8. PBWR-Tallinn Visualization Results in Tallinn City


