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Figure 1. The proposed system has real-time performance on em-
bedded platforms, such as Jetson AGX Orin Developer Kit.

Photo-SLAM is a novel system for simultaneous local-
ization and photorealistic mapping, which can even run on
embedded platforms at real-time speed, as demonstrated in
Fig. 1. In this supplementary, we provide additional results
regarding localization and mapping performance.

1. Localication

Stability. As online systems, SLAMs are required to pro-
cess the incoming frames and estimate current camera poses
in time. Therefore, tracking stability regarding latency and
the average processing time is an important factor in eval-
uating system performance in addition to pose estimation
accuracy. As reported in Table 1 of the main paper, Photo-
SLAM is capable of processing more than 40 frames per
second with accurate pose estimation. The average track-
ing speed is about six times faster than ESLAM [1] and
three times faster than Co-SLAM [3]. Here, we provide
additional analysis on tracking stability while an example
plotted in Fig. 2.

Although the average tracking time of Go-SLAM [4] is
less than Co-SLAM and ESLAM, the processing latency

Figure 2. Tracking speed comparisons on scene office0 using an
RGB-D camera. The vertical axis denotes the processing time of
each frame while the horizontal axis denotes the frame number.
[Ave/Min/Max/Std] represent the average, minimum, and maxi-
mum tracking time and its standard deviation respectively.

is high due to frequently conducting expensive global opti-
mization. As shown in Fig. 2, Go-SLAM often takes about
1 second to process the frame and estimate the pose. More-
over, both Nice-SLAM [5] and Co-SLAM need a longer
time to accurately initialize the tracking. Obviously, our
system can rapidly and stably process the incoming frames,
having minimum average tracking time and standard devia-
tion. The peak processing time of our system occurs when
loop closure is detected for correcting pose estimation drift.

Accuracy. Some qualitative tracking results of Photo-
SLAM are demonstrated in Fig. 3.



(a) Replica office0

(b) Replica room0

(c) TUM fr3-office

Figure 3. Trajectory in the reconstructed map. Green points denote
ground truth trajectory while red denotes the estimated trajectory
of Photo-SLAM.

2. Discussion

Online Mapping vs Offline Mapping. For online map-
ping, the mapping process occurs simultaneously with the
localization process. Therefore it requires continuous and
prompt updates with each new observation as the robot
or camera moves and observes its surroundings. In gen-
eral, online photorealistic mapping is more challenging than
offline photorealistic mapping, since it is crucial to bal-
ance the trade-off between computational efficiency and
rendering quality. As mentioned in the main paper, we
proposed a geometry-based densification strategy and a
Gaussian-Pyramid-based (GP) learning method to achieve
high-quality online mapping. To further support this state-
ment, we compared the photorealistic mapping perfor-

method PSNR ↑ SSIM ↑ LPIPS ↓ Rendering
FPS ↑ Model Size

(MB)

1) 3DG 27.844 0.861 0.213 745.480 36.141
2) 3DG 34.555 0.942 0.065 483.904 144.196
3) 3DG 37.055 0.962 0.032 448.109 219.470

Ours using Mono 33.302 0.926 0.078 911.262 31.419
Ours using RGB-D 34.958 0.942 0.059 1084.017 35.211

Table 1. Comparison of mapping performance between 3D Gaus-
sian splatting (3DG) and our system Photo-SLAM with different
settings on the Replica dataset.

On TUM Dataset Resources

Scene Cam Method
Tracking

FPS ↑ Rendering
FPS ↑ Model Size

(MB)

fr
1-

de
sk Mono

Ours (Jetson) 28.267 340.507 4.610
Ours (Laptop) 28.330 1105.062 7.421

Ours 57.781 2016.690 10.027

RGB-D
Ours (Jetson) 27.970 380.622 5.743
Ours (Laptop) 28.930 1061.040 8.432

Ours 58.378 2083.896 9.963

fr
2-

xy
z Mono

Ours (Jetson) 24.005 169.321 14.286
Ours (Laptop) 24.922 619.554 16.102

Ours 58.241 1405.797 20.380

RGB-D
Ours (Jetson) 21.032 274.718 6.319
Ours (Laptop) 22.665 701.590 13.850

Ours 52.904 1790.120 21.399

fr
3-

of
fic

e Mono
Ours (Jetson) 36.700 291.398 10.669
Ours (Laptop) 38.929 824.658 16.249

Ours 81.575 1522.120 19.211

RGB-D
Ours (Jetson) 18.039 291.907 12.726
Ours (Laptop) 19.636 764.342 15.349

Ours 43.650 1540.757 17.009

Table 2. Additional results of Photo-SLAM with different plat-
forms on the TUM dataset.

mance between our Photo-SLAM and 3D Gaussian splat-
ting (3DG) [2]. 3DG is the SOTA offline method which
takes a set of images with known poses and a sparse point
cloud as input to learn a radiance field for view synthesis.
During the experiments, 3DG used the keyframe poses esti-
mated by Photo-SLAM and performed training for the same
duration as Photo-SLAM. The required point cloud input is
initialized in three different ways: 1) randomly initializing
100 points; 2) randomly initializing 10,000 points; and 3)
initializing from the hyper primitives map of Photo-SLAM.
The results are reported in Table 1. Without inputting fine-
grained point clouds, 3DG needs more time for optimiza-
tion such that the rendering quality decreases. In addition,
to enhance rendering quality, 3DG tends to densify point
clouds leading to larger model size and slower rendering
speed. Whether using monocular cameras or RGB-D cam-
eras, Photo-SLAM consistently delivers compelling render-
ing quality and faster rendering speeds, owing to the effec-
tiveness of the proposed algorithms.



On EuRoC Dataset Resources

Scene Method
Tracking

FPS ↑ Rendering
FPS ↑ Model Size

(MB)

MH-01
Ours (Jetson) 21.359 93.762 43.385
Ours (Laptop) 25.019 316.403 89.700

Ours 44.977 613.958 123.528

MH-02
Ours (Jetson) 22.355 101.021 36.263
Ours (Laptop) 26.189 332.174 81.569

Ours 46.556 675.508 113.116

V1-01
Ours (Jetson) 21.332 106.008 28.444
Ours (Laptop) 25.403 367.903 55.263

Ours 44.763 835.119 74.457

V2-01
Ours (Jetson) 23.872 99.988 27.840
Ours (Laptop) 27.556 307.025 62.588

Ours 48.911 595.234 82.600

Table 3. Additional results of Photo-SLAM with different plat-
forms on the EuRoC MAV stereo dataset.

3. More Results
The results of each scene of the replica dataset are detailed
in Table 4 Additional qualitative results on the TUM dataset
are demonstrated on Fig. 4 and Fig. 5, while Fig. 6 illus-
trates qualitative results of Photo-SLAM on EuReC Stereo
Dataset.
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On Replica Dataset Localization Mapping Resources

Scene Cam Method
Trajectory

(RMSEcm) ↓
Rotation
(RMSE) ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Tracking

FPS ↑ Rendering
FPS ↑ Model Size

(MB)

office0

Mono
Ours (Jetson) 0.467 0.00334 34.415 0.940 0.949 18.328 123.551 17.703
Ours (Laptop) 0.587 0.00343 36.227 0.954 0.071 20.422 413.645 21.703

Ours 0.575 0.00369 36.989 0.955 0.061 42.487 930.598 24.975

RGB-D
Ours (Jetson) 0.499 0.00356 35.447 0.949 0.086 19.076 154.087 18.281
Ours (Laptop) 0.519 0.00317 38.219 0.965 0.053 22.446 497.917 18.826

Ours 0.522 0.00307 38.477 0.964 0.050 48.588 1447.887 19.740

office1

Mono
Ours (Jetson) 5.586 0.31140 32.382 0.904 0.113 18.312 80.048 22.904
Ours (Laptop) 0.379 0.00463 37.970 0.954 0.060 19.968 322.160 21.224

Ours 0.315 0.00383 37.592 0.950 0.062 42.296 857.324 26.982

RGB-D
Ours (Jetson) 0.402 0.00517 37.510 0.953 0.065 19.194 118.584 20.656
Ours (Laptop) 0.440 0.00543 39.109 0.962 0.049 22.349 496.644 19.548

Ours 0.436 0.00477 39.089 0.961 0.047 47.333 1263.343 21.193

office2

Mono
Ours (Jetson) 1.402 0.01452 28.083 0.900 0.131 17.502 90.181 19.704
Ours (Laptop) 2.087 0.02154 31.202 0.927 0.098 18.975 343.662 27.332

Ours 5.031 0.04696 31.794 0.929 0.091 39.604 930.777 31.558

RGB-D
Ours (Jetson) 1.209 0.00964 29.755 0.919 0.110 17.860 124.420 27.560
Ours (Laptop) 1.188 0.00972 32.720 0.940 0.080 21.507 425.452 31.711

Ours 1.276 0.01094 33.034 0.938 0.077 44.062 904.249 34.065

office3

Mono
Ours (Jetson) 0.429 0.00232 28.058 0.886 0.132 17.881 96.872 15.505
Ours (Laptop) 0.409 0.00239 32.012 0.924 0.090 19.518 368.530 20.475

Ours 0.472 0.00227 31.622 0.920 0.086 40.870 1131.957 26.653

RGB-D
Ours (Jetson) 0.718 0.00222 30.954 0.917 0.103 17.889 120.118 20.270
Ours (Laptop) 0.747 0.00233 33.594 0.939 0.072 20.051 388.624 23.617

Ours 0.782 0.00233 33.789 0.938 0.066 40.603 1125.175 25.226

office4

Mono
Ours (Jetson) 0.579 0.00305 30.399 0.921 0.109 18.755 102.949 15.201
Ours (Laptop) 0.616 0.00279 33.656 0.940 0.078 20.311 375.033 21.444

Ours 0.583 0.00272 34.168 0.941 0.072 42.262 849.305 26.154

RGB-D
Ours (Jetson) 0.661 0.00367 32.219 0.931 0.091 17.107 92.237 32.405
Ours (Laptop) 0.629 0.00446 35.534 0.951 0.059 19.361 333.874 32.270

Ours 0.582 0.00423 36.020 0.952 0.054 39.870 1061.749 35.421

room0

Mono
Ours (Jetson) 0.369 0.00321 26.423 0.787 0.221 17.987 87.246 17.121
Ours (Laptop) 0.349 0.00294 29.899 0.868 0.125 19.521 332.127 33.151

Ours 0.345 0.00299 29.772 0.871 0.106 41.020 754.729 44.333

RGB-D
Ours (Jetson) 0.514 0.00265 27.867 0.833 0.165 17.424 104.248 31.196
Ours (Laptop) 0.521 0.00257 31.288 0.914 0.075 19.119 322.585 52.266

Ours 0.541 0.00270 30.716 0.899 0.075 39.825 897.870 55.397

room1

Mono
Ours (Jetson) 0.803 0.00670 27.076 0.841 0.177 19.834 99.038 19.699
Ours (Laptop) 1.046 0.00868 30.459 0.902 0.092 21.580 333.430 32.959

Ours 1.183 0.00772 31.302 0.910 0.083 44.316 782.326 43.865

RGB-D
Ours (Jetson) 0.381 0.00299 30.191 0.895 0.108 18.881 121.986 29.503
Ours (Laptop) 0.399 0.00277 33.071 0.931 0.062 21.782 367.455 43.568

Ours 0.394 0.00320 33.511 0.934 0.057 43.352 1018.111 49.617

room2

Mono
Ours (Jetson) 0.241 0.00280 27.432 0.889 0.138 17.918 80.568 16.303
Ours (Laptop) 0.235 0.00263 32.970 0.935 0.075 19.499 339.442 22.790

Ours 0.225 0.00258 33.181 0.934 0.067 40.313 1053.078 26.834

RGB-D
Ours (Jetson) 0.260 0.00257 31.883 0.928 0.078 15.982 95.480 33.592
Ours (Laptop) 0.275 0.00250 35.295 0.954 0.045 18.158 336.103 38.307

Ours 0.305 0.00257 35.028 0.951 0.043 36.244 953.755 41.032

Table 4. Detailed results of Photo-SLAM with different platforms on the Replica dataset.



(a) fr1-desk (Mono)

(b) fr2-xyz (Mono)

(c) fr3-office (Mono)

Figure 4. Qualitative results of Photo-SLAM on TUM using monocular cameras.

(a) fr1-desk (RGB-D)

(b) fr2-xyz (RGB-D)

(c) fr3-office (RGB-D)

Figure 5. Qualitative results of Photo-SLAM on TUM using RGB-D cameras.



(a) EuRoC MH-01

(b) EuRoC MH-02

(c) EuRoC V1-01

(d) EuRoC V2-01

Figure 6. Qualitative results of Photo-SLAM on stereo EuRoC.
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