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Overview of the Appendix

This appendix is organized as follows:

* In Appendix A, we review the general branch-and-bound algorithm framework.

* In Appendices B and C, we introduce the proposed bound computation methods for TEAR-1 and TEAR-2, respectively.
¢ In Appendices D and E, we introduce the developed bound computation methods for CM-1 and TLS-1, respectively.

* In Appendix F, we prove Proposition 2 (the statement of Proposition 2 is presented in Appendix B.2).

* In Appendix G, we present extra experimental details.

A. The General Branch-and-bound Algorithm

In this section, we review the branch-and-bound framework. Given an objective function 7 (-) and the corresponding decision
variable v, branch-and-bound computes a global minimizer of 7 (-) up to a prescribed error € > 0. It does so by recursively
dividing the parameter space By of the decision variable into smaller branches and computing upper and lower bounds of the
objective over each branch. By upper bounds we mean upper bounds of the optimal value, and by lower bounds over a given
branch we mean lower bounds of the optimal value on this branch.

The algorithmic listing of this branch-and-bound recursion is shown in Algorithm 1. The algorithm maintains the smallest
upper bound U* found so far and the corresponding point v* that achieves that bound; U* and v* are initialized at Line 5, by
a function that computes upper bounds. In the meantime, the algorithm starts with the initial branch By (Line 3), computes
a lower bound (Line 6), and puts the branch By into a priority queue (Line 7). Next, branch-and-bound enters a while loop
(Lines 8-24), at each iteration keeping examining the branch B in the queue with the highest priority (Line 9). If the smallest
upper bound U* found so far is smaller than the lower bound L(B) up to a small tolerance e, then the current point v* already
obtains the minimum value up to error ¢, therefore the algorithm terminates (Lines 10-12). Otherwise, the algorithm proceeds
by dividing the current branch B into smaller branches B,. Similarly, if the lower bound L(B;) is larger than U*, then B;
can never contain any optimal solutions, therefore we can prune it (Lines 15 and 16). Otherwise, the algorithm computes an
upper bound for B, (Line 18), updates the current solutions (U*, v*) if needed (Lines 19-21), and stores the branch B; into
the queue Q with priority L(B;).

As Algorithm 1 shows, the crucial step in the branch-and-bound method is computing the upper and lower bound of the
objective on a given branch B. Hence, to solve TEAR-1, CM-1, and TLS-1, we propose methods for computing the desired
bounds in Appendices B, D and E, respectively. Moreover, in Appendix C we describe the bound computation for TEAR-2.

B. Bounds for TEAR-1
B.1. Upper Bound

Given a branch of , e.g., [a1, aa] X [B1, B1], we choose the center 7, to compute an upper bound U. Let a; := y;1 — 7| x;,
and an upper bound can be computed as

N
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Algorithm 1: The general branch-and-bound template to minimize a given objective function globally optimally.

1 Input: Objective function 7 (-), threshold ¢;

2 Output: A global minimizer v*;

3 Initial branch B < parameter space of v;

4 Q < An empty priority queue;

5 U*, v* getUpperBound(T(-), Bo); /I U* denotes the smallest upper bound so far, and U* = T (v*).
6

7

8

9

L(By) + getLowerBound(7 (-), Bg);
Insert By into Q with priority L(By);
while O is not empty do
Pop the branch B from @) with the lowest lower bound L(B);

10 if U™ - L(B) < € then // Terminate the algorithm: The current v* is already optimal up to tolerance e.
11 end while

12 endif

13 for B; in divideBranch(IB) do /I Divide B into smaller branches B;’s and compute upper and lower bounds for each B;.
14 L(B;) + getLowerBound(7 (+), B;);

15 if L(Bi) > U* then // The branch B; does not contain any optimal solutions, so prune it.
16 continue

17 else /l The branch B; could potentially contain better solutions, so compute an upper bound and store it into the priority queue.
18 U(B;), v; < getUpperBound(7(-), B;);

19 if U(B) < U* then

20 v« v; U* « U(B);

21 end if

22 Insert B; into Q with priority L(B;);

23 end if

24  end for
25 end while
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Figure 1. (a) Illustration of U (t1,) = min{|a; — t1], &1}; (b) llustration of U(t,) = S, U(t1,4) when N = 2. (¢f. Appendix B.1).

where U (t;) is defined to be the sum of U(¢1,4) := min {|a; — t1], &1}, thatis U(t1) := Ziil U(ty,1). Define lg; :=
ay — & and ug; = aj + &1. Note that U(ty,4) equals to |a; — t1] if t1 € [las, uqs), or otherwise & (see Fig. la).
Furthermore, U(t1, ) is differentiable at any point ¢; except when ¢; is equal to l,;, a;, or uy;. Finally, at differentiable
points, the derivative of U(t1,1) is either 1 or —1 or 0, therefore the derivative of U (¢;) liesin {—N,...,—=1,0,1,...,N}.

We need more notations. Let {\ }3Y, be a sorted version of the 3N numbers {a; }}¥; U {14}~ 1 U {uq; }¥ ;. For each
k =1,---,3N — 1, define the open interval Zy, := (A, Ag+1). Without loss of generality, we assume A\ # Ap41 and
therefore 7, is not empty. Note that the derivative of U (¢1,1%) is equal to 1 or —1 depending on the sign of a; — ;. Since the
sign of a; — t; in the definition of U(ty,4) is constant on every interval 7y, the derivative of U(¢,4) is constant on Zj, for
every ¢ and every k. As a consequence, the derivative of U (¢;1) is constant on every interval Z, (see Fig. 1b).

With the above notations, we derive the following proposition that localizes a global minimizer of (1):

Proposition 1. In the N points {a; fil, there is a globally optimal solution of (1).

Proof. First we will show, in the 3N points {\; }3Y,, there is a globally optimal solution of (1). To prove this, let us assume
there is a global minimizer different from the 3N points {\; }3Y,. Note that U(t1) in (1) is differentiable except at the 3N



Algorithm 2: Globally Optimal 1D TEAR Solver for Upper Bound Computation (Proposition 1).

1 Input: {a;} |, {lo;}N 1, and {ugi} Y ;s

2 Output: A global minimizer ¢;” and the minimum value U of (1);

3 {3, = Sort {a; 1Yy U {lai}L U {uai} g

4 U(/\l) — sz\il fil; U — U()\l); // Use U to store the smallest upper bound so far.
5 my < 0; mf <« 0;

6 fork < 1to 3N — 1 do:

7 if A\, € {a;}Y, then

8 mg — mz_l —1;

9 my < mi_; +1;

10 if U(/\k) < U then /I Update U and the minimizer ¢1” once U(\},) is smaller than U.
11 tll — ks U — U()\k),

12 end if

13 elseif \y € {l,;}Y, then

14 mi —mi_; +1;

15 elseif \y € {uy;}lY, then

16 my < mi_; —1;

17 end if

18 U()\k+1) — U(/\k) + (m}j — mZ)(AkJrl — )\k:); /I Compute U (A1) incrementally with the updated m;! and m'}f, based on (4).
19 end for

points {\, }3Y,, therefore the derivative of U (#;) at this global minimizer is 0. Moreover, this derivative is 0 on the entire

interval Z;, and the objective value U (¢1) is constant on Zj. Thus, every point on Z, = (A, Ag+1) is a global minimizer.

Since U (1) is continuous on [Ag, Ag+1], has derivative 0 on (Mg, Ax+1), and every point on (Ag, Ak+1) is a global minimizer,

we conclude that \j, and Ay are global minimizers of U(t;) as well. We have just shown that in the 3N points { A\ }3Y,

there is a globally optimal solution of (1).

Next, we take one step further and prove, in the N points {a;}}Y ,, there is a globally optimal solution of (1). Let us
assume My is a global minimizer of U(¢;). We need to show A\zi1 € {a;}Y ;. For the sake of contradiction, assume
Met1 € {lai}Yq U {ugi}Y . Let us analyze the two intervals associated with A1, namely Z, = (A, Agr1) and Zp o1 =
(Ak+1, Ak+2), and let us also analyze the derivatives of U(t1) on them. Since the derivatives of U (1, ¢) on them are constant,
let us denote by U’ (Zy+1,4) and U’ (Zy, i), respectively, the derivatives of U(t1,7) at some point of Zy 1 and Zy. Define
U'(Z+1) and U’ (Z},) similarly. Then we have the following observations:

o If Agy1 = lg; for some 7, then U’'(Zy,4) = 0 and U’ (Zg41,:) = —1, i.e., by going from Zj, to Ty 1, the i-th component
function U (¢1,4) enters the linear decrease regime from the constant regime. At the same time, we have U'(Zy, j) =
U'(Z41,7) forany j # i; in other words, U (Zx, j) keeps the same trend (linearly decrease, linearly increase, or constant).
As aresult, we have U’ (Z;,) = U/ (Zj41) + 1.

o If Ap41 = ug; for some 4, then U'(Zy, i) = 1 and U’ (Zy+1,%) = 0. And we have U'(Zy, j) = U'(Zg+1,J) for any j # i.
Similarly we have U’ (Zy,) = U’ (Zy41) + 1.

Since U’(Zy) and U’(Zy41) lie in {—=N,...,—1,0,1,..., N}, the assumption A1 € {lui} Y U {ua; } Y leads us to the

following cases:

o IfU’'(Z)) > 1, then we have U (A1) > U(Ag).

o IfU'(Z);) <0, then U'(Zy4+1) < —1 and we have U(Agy1) > U(Agt2).

We have shown U(Aj41) > min{U(\x), U(Ag+2)}. This is a contradiction to the assumption A1 € {la; }; U {uai } Y.

Therefore, any global minimizer of U (¢;) in {\;}3Y¥, must be a point of {a;} ;. The proof is complete. O

In light of Proposition 1, an intuitive algorithm to solve (1) would be computing U (a;) foreach i € {1,..., N} separately;
the solution is some a; that gives the smallest objective value. This algorithm has O(NN?) time complexity.

Let us show how to solve (1) in O(N log N) time. First recall that, on each interval [Ag, Ag+1], U(¢1,) is monotonic or
constant. Let us define M} (resp. ./\/lﬁ) to be the set of indices ¢ for which U (¢1, %) is increasing (resp. decreasing). Denote
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Figure 2. (a) Mlustration of L(t1,4) = miny,cpp,, b,.,] L(t1,bi, ), where L(t1,b;,4) = min{|b; — t1], &1}; (b) Ilustration of L(t1) =

ZZ 1 L(t1,1) when N = 2. (¢f. Appendix B.2).

by m¥ and m¢ the respective sizes of M and M¢. Then we can compute the value of U(\y,) as follows:

U(hg) = Z M —a;) + Z (a; — k) + Z & 2)

iEMy ieMd i€ {1, NI\ {MeuMI}

An important observation is that, for every k, the value U (A1) can be computed incrementally from U (A ):

Uiy1) = Z N1 —a;) + Z (a; — Akt1) + Z i1 3)
iEMy ieMy i€{1, - NI{MpuM}
=U(N\g) + (mf —md)(Aes1 — M) 4

Algorithm 2 implements the recurrence (4) and solves (1) to global optimality. Interestingly, this recurrent formulation does
not depend on the index sets MY and M¢, so we only need to update m¥ and m¢ in Algorithm 2. Finally, since Algorithm 2
only consists of a sorting and scanning operation, its time complexity is O(N log N).

B.2. Lower Bound
Here we first consider the following proposition:
Proposition 2. Given a branch [, as] X [B1, B1] of 71, let [by1, by, ] denote the range of b; = y;1 — 71 ' x;, specifically:

b;; = min {yﬂ —r @i = [sin B cos a, sin Bsin o, cos B, a € a1, s, B € [f1, 62]} , 5)
b;u = max {yﬂ —rxy i = [sin 8 cos o, sin Bsin a, cos f], a € [ag, as], B € [P, 62]} . 6)
We can compute b;; and by, in constant time.

With Proposition 2 proved in Appendix F, we can compute the bounds {b;;, b;,}¥; in O(V) time. Moreover, Proposi-
tion 2 provides the idea of relaxing (4) in the main manuscript into the following problem:

L= min meﬂb —t1], &n}

t1€R, b;E[bi, m]
N @)
= min L(t1,b;,1),
tleR bi€bir, bm]z ( ! )
where L(t1,b;,1) := min{|b; — t1], &1}. Note that for any given t1 € [b;;, b;,|, We can always set b; to t1 so that L(t1, b;, %)
is minimized to 0. Now let us consider
L(ty,i) == min L(ty,bi,i
( 1’2) biEI[?illI}biu] ( b Z)
b —t1, ti € [by — &, bal;
07 t € [bilvbiu]a (8)
t1 — biu,  t1 € [biu, biu + &inl;
&y otherwise.



Algorithm 3: Globally Optimal 1D TEAR Solver for Lower Bound Computation (Proposition 3).

1 Input: {bii 11, {biu iy, {ni iy, and {upi }iE

2 Output: A global minimizer ¢; and the minimum value L of (9);

3 {wn iy« Sort {ba ) U {biu g U {lni by U {usi}ilss

4 L(’l/)l) — Zf\i1 fz‘l? L — L(i/)l); // Use L to store the smallest lower bound so far.
s g+ 0; nd <0

6 for k < 1to4N — 1 do:

7 if ¢y € {by}Y, then

d d .
8 ny < njy_; — 1
9 if L(¢k) < L then // Update L and the minimizer ¢1 once L(1)y,) is smaller than L.
10 1+ Yr; L+ L(Yy);
11 end if
12 elseif ¢y, € {b;,} Y, then
u u .
13 ny < npg_; +1;
14 if L(wk) < L then // Similarly to Line 9, update L and the minimizer #1 once L (1)) is smaller than L.
15 51 < 'LZJk; L < L(l/)k),
16 end if
17 elseif ¢y € {ly;}~  then
d d .
18 Neyp <Ny + 15
19 elseif ¢y € {up; }Y, then
u u .
20 Mgy < N — 1;
21 endif
22 L(’t/]k+1) = L(’lﬁk) + (ng — ng)(wqul — ’l/Jk), /I Compute L(t)41) incrementally with the updated n}* and 77;{ based on (10).
23 end for

Define lp; := by — &1 and up; := b;y + &1. Note that L(t1, ¢) is differentiable at any point ¢, except when ¢; is equal to lp;,
bii, by, OF up;. Furthermore, at differentiable points, the derivative of L(t1,1%) is either 1 or —1 or O (see Fig. 2a). Now we
can convert (7) into the following equivalent problem:

N
L = min min  L(ty, b;,1
T tiER A belbi,biu] ( b )
=1
N
9
= min L(tl,l) ( )
t1ER 4
=1
= min L(t
1R (1)7

where L(t1) is defined to be the sum of L(t1,1), i.e., L(t1) = Zfil L(t1,1). According to the derivation property of L(t1,1),
the derivative of L(¢;) at differentiable points lies in {—N, ..., —1,0,1,..., N}. Based on the above notions, we have

Proposition 3. In the 2N points {by }I¥., U {b,} Y|, there is a globally optimal solution of (9). And (9) can be solved by
Algorithm 3 in O(N log N) time.

Proof. Let {1 }3Y, be a sorted version of {b; 1 U {bi} Y1 U {lpi Y1 U {upi}Y,. Foreach k = 1,--- 4N, define
the open interval J := (Y, ¥r11). Without loss of generality, we assume ¢y, # 41 and therefore Jj is not empty.
Similarly to U(¢1,¢) in Appendix B.1, the derivative of L(t1, ) on every interval 7}, is constant (say, 0, —1, or 1); therefore
the derivative of L(¢;) is also constant on every interval 7, similarly to U(¢;) in Appendix B.1 (see Fig. 2b). Since L(t;1)
shares similar derivation properties with U(t1), we can easily infer that in the 4N endpoints {wk}%ﬁ 1> there is a globally
optimal solution of (9).

In the following we take one step further and prove that in the 2N points {b;; }¥.; U {b;,,}¥,, there is a globally optimal
solution of (9). Assume that ¢ is a global minimizer of L(t;). We need to show 91 & {lpi}¥; U {up;i}Y,. For



the sake of contradiction, suppose that ¥y € {lbi}i\il U {up; i‘;l. Consider the two intervals associated with ¥4 1,
namely Ji = (Yk, Yr+1) and Jrr1 = (Yr+1, Yr+2). Since the derivatives of L(¢1) on them are constant, let us denote
by L'(Zy+1) and L'(Zy), respectively, the derivatives of L(¢1) at some point of Jx11 and J. Then we can observe that,
as long as 1 belongs to {I; }}¥; or {up; }¥,, it always holds that L'(J;) = L'(Jr4+1) + 1 (similarly to the equality
U'(Zy) = U'(Zg41)+1in Appendix B.1). Since L' (Zy11) and L' (Z,) also liein {—N, ..., —1,0,1, ..., N}, the supposition
Y1 € {lpi 11 U {up; } Y, lead to the following cases:
o If L'(Jx) > 1, then we have L(tx+1) > L(¢).
o If L' (Ji) <0, then L' (Zy41) < —1 and we have L(¢g4+1) > L(Ykt2).
We have shown L(t;4+1) > min{L(vy), L(¢k+2)}. This is a contradiction to the assumption that 141 is a global mini-
mizer. Therefore, any global minimizer of L(¢;) in {5 }+Y, must be a point of {b; }Y ; U {b;y, }1¥ ;.

Now, to find a global minimizer of (9), it remains to evaluate the objective value of (9) at all points {b; } ¥ ; U {b;, } Y,
and pick one point that yields the minimum objective. Similarly to the computation of U (A ) in (4), we can compute L(ty)
incrementally using the formula

L(¥r41) = L(¥e) + (nf — nd) (Va1 — ¥), (10)

where n¥ and n{ represent the numbers of increasing and decreasing terms of {L(t1,4)}~ , at Jj, respectively. The details
are in Algorithm 3. In particular, Algorithm 3 iterates over {1/} }+Y, to update n¥ and n¢, so as to compute L(¢/y1) based
on (10). At each iteration we can update L by comparing L(t;11) and L, and when the loop finishes, the minimum value L
is discovered, associated with the optimal solution stored in t. O

C. Bounds for TEAR-2

In this section, we show that we can conduct a simple reparameterization on TEAR-2, so as to solve it using similar bound
computation methods that we develop for TEAR-1 (see Appendix B). Note that the extra constraint r§ #; = 0 in TEAR-2
restricts the 72 to be determined by only 1 degree of freedom. Then we can substitute the decision variable 7, in TEAR-2
with the variable o € [0, 27) in the constraint 7, = [sin 3 cos a, sin Bsin a, cos 3] T € S, i.e.,

. . T
min i2 — i —ta]; &
a€l0,2m),ta€R Z min{lys =7, @ 2l G2l

i€Zy (l 1)
s.t. TQT r1 =0

79 = [sin f cos o, sin B sin a, cos ] |

Therefore, we can branch over the 1-dimension region [0, 27) to search for the globally optimal solution. Specifically, given
a branch [y, as], we consider the following upper and lower bounds:

Upper Bound. We choose the center ¢ of [a, aa] to compute an upper bound. Then the 75 can be solved by combining the
constraints in (11) and we denote it by 5. Let a;o 1= y;0 — T:QT:Bi, the upper bound can be computed as follows:

glglé Z min{|a;s — ta|, &2} (12)
i€Zy
Obviously, (12) shares the same problem structure with (1). Therefore we can directly call Algorithm 2 to get a globally
optimal solution of (12).

Lower Bound. Based on the constraints on 75 in (11), it is clear that 3 is restricted to an available range on the given
branch [a, a]. Let [B1, B2] denotes this range and b;s := y;2 — 75 x;, we can compute the range [bly, b%%] of b;z based on
Proposition 2. Then it suffices to relax (11) into the following problem for a lower bound:

min min{|bis — ta|, &2}
t2E€R,biz€[bly b ; {Ibiz = ta2|, &} .
1ely

Note that (13) and (7) share the same structure, therefore we can adopt Algorithm 3 to solve (13) with global optimality.



Algorithm 4: Interval Stabbing (Theorem 1).

L Input: Z = {51, Zpul} e

2 Output: Best stabber z* and the corresponding number of stabbed intervals 7*;
3 Z « Sort all the endpoints in Z;

4 count < 0; T™* < count;

5 for p < 1to 2P do:

6 if Z(p) is a left endpoint then
7 count < count + 1; /'If the current stabber moves to a left endpoint, one more interval is stabbed.
8 if count > T* do: // Update T™* and the best stabber z* once the current number of stabbed intervals count is larger than 7.
9 ¥« Z(p); T*  count;
10 end if
1 else
12 count < count — 1; /I If the current stabber moves to a right endpoint, one less interval is stabbed.
13 endif
14 end for

D. Bounds for CM-1
Before introducing the bounds for CM-1, we first present a relevant and widely used algorithm, called interval stabbing.

Theorem 1. (Interval Stabbing) Given a set of intervals Z = {[zp1, zpu| }}—1, consider to find some stabber z that interacts
with the most number of intervals, i.e.,

P
max Zl 1(z € [2p1, 2pul) (14)
p:

where 1(-) denotes the indicator function. Then Algorithm 4 solves (14) in O(P log P) time.

D.1. Upper Bound

Given a branch [r1,77] of r1, e.g., [a1, ] X [B1, B1], we define b; := y;; — r{ x; as Appendix B.2. Based on Proposition 2,

the range [b;;, b;,,] of b; can be easily computed. Moreover, we have the following proposition:
Proposition 4. We can compute an upper bound U ¢y of CM-1 via solving

N

—_— Lt € b — € b 4 E]) I
Ucm glg]%fzzzl (t] S [bzl &i1s b +€’Ll]) (5)

Specifically, U s can be computed in O(N log N) time by Algorithm 4.

Proof. We first consider CM-1 constrained on the branch [ry, 7], that is,

N
max  max ]Zl(|yz‘1 —rlx—t] <&1). (16)

t1ER 7‘16[7‘1, 1] 4
— =1

To compute an upper bound of (16), we can relax it into

N
max max 1 (|y11 — r;—xi —t1| < 51-1) . a7

t1ER “— ri€(ry, 71
=1 —



With the notation b; := y;1 — r1 " x; and the bounds b;; and b;,, in Proposition 2, we have

N
max max 1 (|y; —'rTa:i—t <¢;
t1€R Py 7‘16[277'71] (‘yl ! 1| _fl)
N
- 1(b; — &1 <t1 <b;+& 18
B2 i T S s sheren) e
N
<max » 1 (by — &1 <ty < by + &) (18b)
teR
N
=max 1(ti € [bi — &, biw+&i1]) =Ucwm (18¢)
=

Thus Ucyy is indeed an upper bound of CM-1. Note that (18c) is exactly an interval stabbing problem as (14), therefore
U ¢ can be solved in O(N log N) time by Algorithm 4. O

D.2. Lower Bound

We choose the center 7 of the given branch [rq,77] to compute a lower bound L, of CM-1, i.e.,

N
Loy = 1 (lyin — 7 i — t1] < &1). 19
=COM ggﬁ; (|ytl T T t1| = gtl) ( )

Define a; := y;1 — 7 @i, la; = a1 — &1, and u,; := a; + &;1. As in Appendix D.1, let us rewrite (19) as follows:

N
Loy = max 1(a; — &1 <t <a;+ &) (20a)
1€
i=1
N
=max ¥ 1(yi —lai <11 < Uai) (20b)
t1ER =
N
= 1(t; € [laiy Uail) - 20
It??%f,_l (ti € [lais Uail) (20¢)

We have transformed (19) into an interval stabbing problem (20c). Therefore we can compute the lower bound L., in
O(N log N) time by Algorithm 4.

E. Bounds for TLS-1
E.1. Upper Bound

Similarly to Appendix B.1, we choose the center 7, of the given branch [ry,71] to compute an upper bound Uz ,s of this

branch. Let a; := y;; — 7{ @; as Appendix B.1 and Appendix D.2, we have

N
= . . . L 2 2
Urrs = glé%;mm{(az t1), &t o

= min UTLS(tl)v
t1ER

where Urps(t1) is defined to be the sum of Urps(t1,i) := min{(a; — t1)?, &34}, thatis Urps(t1) := Zf\;l Urrs(ti,4)).
We begin by the following auxiliary result (easy to prove):

Theorem 2. Consider the following problem:

Q
JCim, > (g —d) (22)

q=1
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Figure 3. (a) Hlustration of Urrs(t1,i) = min{(a; — t1)?, €4 }; (b) Nlustration of Urrs(t1) = S0, Urrs(ti,i) when N = 2. (cf.
Appendix E.1).

Letd := é 22221 Vg then the global optimizer dto (22) is given as follows:

d, deld, dy);
d=1d,, d>d,; (23)
dy, oZ<dl.

Let us now consider computing Uz, in (21). Define lo; := a; — &1, Uai = a; + 1. Let {\}2Y, be a sorted version of
the 2N numbers {l,;}¥; U {uq; },. On each interval Z, := [Ag, A\g11], it is clear that Urzs(t1,4) can be only the part of
quadratic (a; — t1)? or the constant £2 (see Fig. 3b).

Based on Theorem 2 and the above notation, we develop Algorithm 5 to get the globally optimal solution of (21) in
O(Nlog N) time. Algorithm 5 iterates over {)\k}%ﬁ ; and computes the minimal value U}, of Urps(t1) on each interval
Ty. Obviously the minimum Uy, in {Uk}iﬁ 1 Lis exactly the minimum value Urpg, and next we will show that it can be
computed incrementally during the iteration. Define U}! to be the minimal value of the sum of Ury,s(t1,)s being quadratic
on each interval 7, as well as Uf to be sum of Urrg(t1,4)s being constant. 1t is clear that Uy = U, g + Uj. Based on
Theorem 2, we have

U,g = Z (am — t1k-)2
meMi

Z am” 4+ My - t1),” — 2ty - M - g,
meMi

(24)

where MZ is defined to be the set of indices of Urps(t1,1)s being quadratic on the interval Zy, ¢y is the corresponding

value of ¢, leading to U}! in Z}, (that is, the d given by Theorem 2), M} is the set size of M{, and @y, is the average value of

related a;s in M. At each iteration, the index set M| differs from M _, by at most one element. More precisely:

o If A\, € {lai}zN:l, then /\/IZ has one more index ¢ than MZ_I, and for this index 4, the component Ury,g(t1,4) is quadratic
on interval Zj. In this case, we say we enter a quadratic regime.

o If A\, € {uqi}Y,, then M7 has one less index i than M _,, and for this index i, the component Uz s (¢1,4) is constant
(or no longer quadratic) on interval Z,. In this case, we say we leave a quadratic regime.

In either case, we can update U ,Z from U, ,371 as follows:

Mq
BN B =i m cagy Ak € {lai} iy ’s
A A1 — v gy Ak € {Uai P 5
M;cl—l_l k—1 M}j,l—l ks k ar =1
Ul — i = ar? + M-ty - (1 — 2ag) — M}, “ti—1) - (Li(e—1) — 2ax-1), e € {lai} N1 (25b)
- —ap? + M}ty - (te — 2a) — M| -ty - (Bige—1) — 286-1), Ak € {wai iy

Based on (25b), we can easily compute U}! in constant time (Lines 10-14 and 18-22) at each iteration. As to U, at each
iteration it also only differ with U7_; from one element, that is, containing one less constant term when ); belongs to
{lm-}lN:l, or containing one more constant term when A\, belongs to {uai}ij\il. Therefore U can be also incrementally
computed by adding or subtracting the threshold term at each iteration (Lines 15 and 23). Then Uy can be computed by



Algorithm 5: Globally Optimal 1D TLS Solver for Upper Bound Computation (21).
1 Input: {lo;}705, {uai}iL,, and {a; 1L,

2 Output: A global minimizer ¢;” and the minimum value U5 of (21);

3 {N3RY) < Sort {lai b1y U {uai Hilys

4 Uy + ZZI\;1 51'21; UTLS <« Up;

5 U+ 0; MJ<0; ag<«0; U<+ Uy

6 for k < 1to2N — 1 do:

7 I [Ay Aegals

8 if A\, € {l,:}Y, then

9 M]g — Mlgfl +1; /I Since \j, € {/“’}/\;1‘ we enter a quadratic regime.
10 Kin < Index of Ay, in {lo: V13
1 ay < k" elementin {a;} ¥ ;

Mq
12 e T v
13 t1; < Compare aj with 7, based on (23); // Compute the minimizer ¢1;, on the interval Zj, (see Theorem 2).
14 Ul Ul +ar® + M}ty - (i — 2ax) — M| - tie—) - (bre—1) — 2a5-1)3
15 Ug+Ug_, - & 1
16 elseif \y € {uy;}Y, then
17 M]g — Ml(cl—l —1; /1 Since A\ {wqi }]\: ,» we leave a quadratic regime.
18 Eout < Index of Ay, in {uq; Y ;
19 ay < kth, elementin {a;} Y ;;
@ e Mg Ly

¢ k

21 tik < Compare ay, with Z;. based on (23); // Compute the minimizer ¢, on th interval Z, (similarly to Line 13).
22 UIZ — U]Z—l — ak2 + Mg stk - (tlk — 2@) — Mlg—l 'tl(k—l) . (tl(k—l) — 2@),
23 U« Uf_ + &, 1
24 endif
5 Uy« U+ UG
26 if Up < UTLS then // Update U, 5 and the global minimizer ¢’ once Uy, is smaller than Upp 5.
77 ty < tirs Urps < Uks
28 end if
29 end for

summing U} and Uf at each iteration. Since the sorting operation leads to O(N log N) time complexity and the iteration
leads to O(NN) time complexity, the Uz, s can be computed in O(N log N) time by the proposed Algorithm 5. In addition,
based on the comparison at each iteration (Lines 26-27), Algorithm 5 can solve (21) to global optimality.

E.2. Lower Bound

Let b; := y;1 — 71 | ; as Appendix B.2 and Appendix D.1, then the range [b;;, b;,] of b; in the given branch can be solved
by using Proposition 2. To compute a lower bound, it suffices to relax TLS-1 into the following problem:

N
Lo in 3 min{(b; — )2, €
Lrrs — glér[i“’bw} 2 min{(b; )5 &t

(26)

N
min E Lrrs(ty, bi, i),
t1€ER, bi€[bir,biu] im1
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Figure 4. (a) Illustration of Lrrs(t1,4) = miny, e, b,,] Lrrs(t1,bi, ), where Lrrs(t1,bi,4) = min{(b; — t1)2, 5121}; (b) Ilustration
of Lrrs(t1) = vazl Lrrs(ti,t) when N = 2. (¢f. Appendix E.2).

where Lrpg(t1,bi,i) = min{(b; — t1)?, £4}. Note that Vt; € [by,biy], b; could be set by ¢; so as to minimize
Lrps(ti, b, 1), accordingly we define

Lrps(ti,i) = ber[illl%7 ]LTLs(h,bi,i)

(b —t1)?,  t; € [bi — &, bal;

)0, ti € [bi, biul; @7
(biw — 1), ti € [bi, biw + Eir;
£, otherwise.
Then (26) can be transformed equivalently to:
N
L = mi i L ty,b;,1
&TLS glé{é 2 bier[ililll’lbm] rrs(t1, biy0)
N
. ) (28)
= min ; Lrps(ti,i)
= min L t
min Lrrs(t1),

where Lrys(t1) is defined to be the sum of Lppg(t1,1), thatis Lyps(t1) = Zivzl Lrps(ty,i). Define ly; := by — &1,
Upi = biw + &1, and Lyps(ty) := Zf\il Lrrs(ty,i). Let {1 }3Y, be a sorted version of {b; }7¥ ;U {b;, }¥, U {lp: }¥, U
{up;}¥.;. Then on each interval J;, := [¢g,%)41], it is obvious that Lpzg(t1,4) can be only one the two quadratics
{(bit — t1)?, (biw — t1)?} or one of the two constants {0, ¢4} (see Fig. 4). In the following, we develop Algorithm 6 to get
the globally optimal solution of (28) with O(N?) time complexity based on the above notions.
Specifically, we iterate over {ty, }iﬁ 1 to compute the minimal value Ly, of Ly 1,s(¢1) on each interval Jj, and the minimum
one in {Lk}iﬁfl is exactly the Ly . On each 7}, we define a set V! to store the indices of Lrps(t1,1)s being quadratic,
as well as a variable L§ to store the sum of Lr 1s(t1,1)s being constant. At each iteration, the index set ,g differ from
., by at most one element and the variable L{ can be updated from L{_,. Suppose k' is the index of ¢, in one of the sets

{Ini 120} H{bin 111 /i I we have

e If o)y € {lbi}i]\il, then N,f has one more index %k’ than qu—p and L{ has one less constant term 5,%, than L¢,. In this case,
similarly to Appendix E.1, we say we enter a quadratic regime.

o If ¢y, € {bi}Y,, then N has one less index & than NV}, and L, equals to L§_,. In this case, similarly to Appendix E.1,
we say we leave a quadratic regime.

o If ¢y, € {b;n},, then ;! has one more index &’ than N} |, and L§ equals to LS _,. In this case, we enter a quadratic
regime.

o If ¢y, € {up; }7¥,, then N} has one less index k' than A}, and L§ has one more constant term &7, than L¢, . In this case,
we leave a quadratic regime.

In either cases, N, ,g and Lj, can be updated. Then we can compute the minimal value L‘,i of the sum of Lrps(t1,4)s that

i € N} (quadratic terms) based on Theorem 2 with at most O(NN) time complexity, and furthermore the minimal value



Algorithm 6: Globally Optimal 1D TLS Solver for Lower Bound Computation (28).

1 Input: {0y}, {biu oy {lbi Files and {upi 1y

2 Output: A global minimizer ¢; and the minimum value L, 5 of (28);
3 {wn iy < Sort {ba}iYy U i}y U {li HE U {uni 1Ly

4 Lo < Zivﬂ & Lrps < Lo

s Nf 0, L§ < Lo;

6 for k <~ 1to 4N — 1 do:

7 Tk =M, Aegals

8 ifyy € {lbi}é\il then

9 k' < Index of 9y, in {lp; }1¥ 3

10 ng — N];tl U {k/}; /1 Since 5, € {lp; }}\;r we enter a quadratic regime.

u Ly Ly — &1

12 elseifyy, € {b;}Y, then

13 k' + Index of ¢y, in {b; }¥ ;;

14 N,g — ng—l \ {k/}; /I Since 1y, € {by; }»1\: |» we leave a quadratic regime.

15 Li « Lj_qs

16 elseif ¢y, € {b;,} Y, then

17 k' + Index of ¢y, in {b;y, } ¥ 1;

18 N,g — N,;tl U {k/}; /I Since 1y, € {biy, };\':] , we enter a quadratic regime.

19 Li « Li_qs

2 elseif yy, € {uy}Y, then

21 k' < Index of 9y, in {upi } N 1;

22 ng — N]gil \ {k‘/}; /I Since 1y, € {up; }1\;1. we leave a quadratic regime.

23 L§ — Lg_ + & 1

24 end if

25 tAlk, LZ — mintlkGJk ZnEN‘I (an — tlk)2 based on Theorem 2; // Compute the minimizer £1); and minimal value f;/ of the
sum of quadratic terms on the interval 7}, (see Theorem 2).

26 Ly« L+ L§;

27 if L, < LTLS then // Update L. ¢ and the global minimizer 1 once Ly, is smaller than Ly o

28 £1 — £1k§ Lyrg < Li;

29  endif

30 end for

Ly = LZ + L on each interval J;,. Based on the comparison at each iteration (Lines 27-28), Algorithm 6 can solve (28) to
global optimality with O(N?) time complexity.

F. Proof of Proposition 2

Letx; := [.Z‘il, Xi2, xig]—r, we have

-
bi=yi1—T1 T
= ;1 — X1 SIn S cos & — ;o 8in Bsin a — x;3 cos B

= y;1 — (241 cosa + zio sin @) sin 8 — x;3 cos B

=yi1 — Vxin?+ 222 cos (o — a™)sin 8 — ;3 cos 3,

where o* € [0, ] denotes the arc-tangent angle of x;2/x;;. Now consider the following lemma:

(29)



Lemma 1. Given 6 € [01,02] C [0, 7] and ¢ € [0, 7], define f(0) := cos(0 — ¢), there is

[£(61), f(02)], if ¢ > 0o;
f(0) € ¢ [f(02), f(61)], if ¢ < 61; (30)
[min{f(61), f(02)}, 1], otherwise.

Else if [01, 03] C (m, 27, there is

[f(92)7 f(el)]ﬂ if ¢ > 0y;
f(0) € § [f(0r), f(62)], if ¢ < 6h; (€2
[—1, max{f(61), f(02)}], otherwise.

Based on Lemma 1 (easy to prove), the range of cos (o — a*) in (29) can be computed and we define it by [¥;, U,].
Since sin 8 > 0, we have

Yi1l—V T2 + 22U, sin f — x3co8 8 < b; < yin — V&2 + 2220 sin f — 43 cos 8

(32)
<~ yil*\/(xilz + $i22)‘1’u2 +xi32cos (B — f]) < by <y — \/(%‘12 + IEizz)‘I’l2 + x;32 cos (B — B),

where 3, 8% € [0, 7] denote the arc-tangent angles of (\/.137;12 + $i22\11u)/$7;3 and (\/xﬂQ + l‘igz\lfl)/l‘ig,, respectively.
Note that the ranges of cos (8 — ;) and cos (8 — ;) can be solved based on Lemma 1. Denote ~}* as the upper bound of
cos (8 — 1), 7., as the lower bound of cos (3 — B;), we have

bii = yi1 — 71“\/(%12 + 292) 0,7 + 2532 < b <y — ’75\/(%12 + 2492) 0% 4 2432 = by (33)

Since ¥y, ¥, v;*, and vlu in (33) can be easily computed based on Lemma 1, we can therefore get the range [b;;, b;,,] of b;
in (29) in constant time.

G. Extra Experimental Details

Hyperparameter Setup. In Sec. 2.2 of the main manuscript, we decomposed the original 6-dimensional problem, TEAR,
into two subproblems, TEAR-1 and TEAR-2. TEAR has a threshold hyperparameter ;, as is typical in many prior works.
Moreover, TEAR-1 has its own threshold &;; and TEAR-2 has &;5.

However, this is not to say our method requires more hyperparameters than prior works. In fact, given the commonly used
parameter &;, we can choose &;; and &5 relatwely easily, and here is how we do it. First, we simply set &;; to be equal to
&i- Second, recall the optimal solution (7, tl) and the associated inlier indices Z; defined in (1) in the main manuscript. For
each i € 7, we set Eipto & — |y — P x; — tl\ Our experiments justify the choices of the hyperparameters. In addition,
we set the minimal branch resolution in the BnB part of our method as le-3. As to TR-DE [1], we set the resolution as Se-2
to guarantee its experimental time limited in five days (otherwise it costs averagely more than 200s for each real-world pair).

Dataset Details. For the three real-world datasets (3DMatch [7], KITTI [4], and ETH [6]), we follow [1, 2, 5] to set the inlier
threshold ¢; based on the downsampling voxel size. Specifically, ; is set to 10 cm for the 3DMatch Dataset [7], 60 cm for
the KITTI Dataset [4], and 30 cm for the ETH Dataset [6], respectively.

In the Stanford 3D scanning dataset [3], we used 5 objects. And in Tab. 4 of the main manuscript, we reported the number
of points each object contains, namely, Armadillo has 10° points, Happy Buddha has 5 x 10° points, Asian Dragon has
106 points, Thai Statue has 4 x 10° points, and Lucy has 107 points. We emphasize that each of these objects has slightly
more points, and for clarity we downsampled them a little bit. In fact, Armadillo has approximately 1.7 x 10° points, Happy
Buddha has approximately 5.4 x 10° points, Asian Dragon has approximately 3.6 x 106 points, Thai Statue has approximately
4.9 x 106 points, and Lucy has approximately 1.4 x 107 points.

Related Translation Errors of Fig. 7. Recall that in Fig. 7 of the main manuscript, we report the average rotation errors of

the unscalable methods in Tab. 4 of the manuscript evaluated on the downsampled data and our TEAR on the original data.
As shown in Fig. 5, we additionally report the related average translation errors.
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Figure 5. Average translation errors of other methods in Tab. 4 of the manuscript taking as inputs the 10* points downsampled from Lucy
that originally has 107 point pairs (Fig. 5a: 99.8% outliers; Fig. 5b: 95% outliers). TEAR runs on the original 107 input point pairs. 20
trials.
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