
Scalable 3D Registration via Truncated Entry-wise Absolute Residuals
(Appendix)

Tianyu Huang1* Liangzu Peng2* René Vidal2 Yun-Hui Liu1

1The Chinese University of Hong Kong 2University of Pennsylvania
1tyhuang, yhliu@mae.cuhk.edu.hk 2lpenn, vidalr@seas.upenn.edu

Overview of the Appendix
This appendix is organized as follows:
• In Appendix A, we review the general branch-and-bound algorithm framework.
• In Appendices B and C, we introduce the proposed bound computation methods for TEAR-1 and TEAR-2, respectively.
• In Appendices D and E, we introduce the developed bound computation methods for CM-1 and TLS-1, respectively.
• In Appendix F, we prove Proposition 2 (the statement of Proposition 2 is presented in Appendix B.2).
• In Appendix G, we present extra experimental details.

A. The General Branch-and-bound Algorithm
In this section, we review the branch-and-bound framework. Given an objective function T (·) and the corresponding decision
variable v, branch-and-bound computes a global minimizer of T (·) up to a prescribed error ϵ > 0. It does so by recursively
dividing the parameter space B0 of the decision variable into smaller branches and computing upper and lower bounds of the
objective over each branch. By upper bounds we mean upper bounds of the optimal value, and by lower bounds over a given
branch we mean lower bounds of the optimal value on this branch.

The algorithmic listing of this branch-and-bound recursion is shown in Algorithm 1. The algorithm maintains the smallest
upper bound U∗ found so far and the corresponding point v∗ that achieves that bound; U∗ and v∗ are initialized at Line 5, by
a function that computes upper bounds. In the meantime, the algorithm starts with the initial branch B0 (Line 3), computes
a lower bound (Line 6), and puts the branch B0 into a priority queue (Line 7). Next, branch-and-bound enters a while loop
(Lines 8-24), at each iteration keeping examining the branch B in the queue with the highest priority (Line 9). If the smallest
upper bound U∗ found so far is smaller than the lower bound L(B) up to a small tolerance ϵ, then the current point v∗ already
obtains the minimum value up to error ϵ, therefore the algorithm terminates (Lines 10-12). Otherwise, the algorithm proceeds
by dividing the current branch B into smaller branches Bi. Similarly, if the lower bound L(Bi) is larger than U∗, then Bi

can never contain any optimal solutions, therefore we can prune it (Lines 15 and 16). Otherwise, the algorithm computes an
upper bound for Bi (Line 18), updates the current solutions (U∗,v∗) if needed (Lines 19-21), and stores the branch Bi into
the queue Q with priority L(Bi).

As Algorithm 1 shows, the crucial step in the branch-and-bound method is computing the upper and lower bound of the
objective on a given branch B. Hence, to solve TEAR-1, CM-1, and TLS-1, we propose methods for computing the desired
bounds in Appendices B, D and E, respectively. Moreover, in Appendix C we describe the bound computation for TEAR-2.

B. Bounds for TEAR-1
B.1. Upper Bound

Given a branch of r, e.g., [α1, α2]× [β1, β1], we choose the center ṙ1 to compute an upper bound U . Let ai := yi1 − ṙ⊤1 xi,
and an upper bound can be computed as

U = min
t1∈R

N∑
i=1

min {|ai − t1|, ξi1} = min
t1∈R

U(t1), (1)

* Equal contribution

1



Algorithm 1: The general branch-and-bound template to minimize a given objective function globally optimally.

1 Input: Objective function T (·), threshold ϵ;
2 Output: A global minimizer v∗;
3 Initial branch B0 ← parameter space of v;
4 Q ← An empty priority queue;
5 U∗, v∗ ← getUpperBound(T (·), B0); // U∗ denotes the smallest upper bound so far, and U∗ = T (v∗).
6 L(B0)← getLowerBound(T (·), B0);
7 Insert B0 into Q with priority L(B0);
8 while Q is not empty do
9 Pop the branch B from Q with the lowest lower bound L(B);

10 if U∗ - L(B) < ϵ then // Terminate the algorithm: The current v∗ is already optimal up to tolerance ϵ.
11 end while
12 end if
13 for Bi in divideBranch(B) do // Divide B into smaller branches Bi’s and compute upper and lower bounds for each Bi.
14 L(Bi)← getLowerBound(T (·), Bi);
15 if L(Bi) ≥ U∗ then // The branch Bi does not contain any optimal solutions, so prune it.
16 continue
17 else // The branch Bi could potentially contain better solutions, so compute an upper bound and store it into the priority queue.
18 U(Bi), vi ← getUpperBound(T (·), Bi);
19 if U(B) < U∗ then
20 v∗ ← v; U∗ ← U(B);
21 end if
22 Insert Bi into Q with priority L(Bi);
23 end if
24 end for
25 end while

1al 1au1a

2al 2au2a

1( , )U t i

ai
l

ai
u

i
a

1t 1t

1i 1i1| |
i
a t

1( ,1)U t

1( , 2)U t

1( )U t

(a) (b)

Figure 1. (a) Illustration of U(t1, i) = min{|ai − t1|, ξi1}; (b) Illustration of U(t1) =
∑N

i=1 U(t1, i) when N = 2. (cf . Appendix B.1).

where U(t1) is defined to be the sum of U(t1, i) := min {|ai − t1|, ξi1}, that is U(t1) :=
∑N

i=1 U(t1, i). Define lai :=
a1 − ξi1 and uai := a1 + ξi1. Note that U(t1, i) equals to |ai − t1| if t1 ∈ [lai, uai], or otherwise ξi1 (see Fig. 1a).
Furthermore, U(t1, i) is differentiable at any point t1 except when t1 is equal to lai, ai, or uai. Finally, at differentiable
points, the derivative of U(t1, i) is either 1 or −1 or 0, therefore the derivative of U(t1) lies in {−N, . . . ,−1, 0, 1, . . . , N}.

We need more notations. Let {λk}3Nk=1 be a sorted version of the 3N numbers {ai}Ni=1 ∪ {lai}Ni=1 ∪ {uai}Ni=1. For each
k = 1, · · · , 3N − 1, define the open interval Ik := (λk, λk+1). Without loss of generality, we assume λk ̸= λk+1 and
therefore Ik is not empty. Note that the derivative of U(t1, i) is equal to 1 or −1 depending on the sign of ai − t1. Since the
sign of ai − t1 in the definition of U(t1, i) is constant on every interval Ik, the derivative of U(t1, i) is constant on Ik for
every i and every k. As a consequence, the derivative of U(t1) is constant on every interval Ik (see Fig. 1b).

With the above notations, we derive the following proposition that localizes a global minimizer of (1):

Proposition 1. In the N points {ai}Ni=1, there is a globally optimal solution of (1).

Proof. First we will show, in the 3N points {λk}3Nk=1, there is a globally optimal solution of (1). To prove this, let us assume
there is a global minimizer different from the 3N points {λk}3Nk=1. Note that U(t1) in (1) is differentiable except at the 3N



Algorithm 2: Globally Optimal 1D TEAR Solver for Upper Bound Computation (Proposition 1).

1 Input: {ai}Ni=1, {lai}Ni=1, and {uai}Ni=1;
2 Output: A global minimizer t1′ and the minimum value U of (1);
3 {λk}3Nk=1 ← Sort {ai}Ni=1 ∪ {lai}Ni=1 ∪ {uai}Ni=1;
4 U(λ1)←

∑N
i=1 ξi1; U ← U(λ1); // Use U to store the smallest upper bound so far.

5 mu
0 ← 0; md

0 ← 0;
6 for k ← 1 to 3N − 1 do:
7 if λk ∈ {ai}Ni=1 then
8 md

k ← md
k−1 − 1;

9 mu
k ← mu

k−1 + 1;
10 if U(λk) < U then // Update U and the minimizer t1′ once U(λk) is smaller than U .

11 t1
′ ← λk; U ← U(λk);

12 end if
13 else if λk ∈ {lai}Ni=1 then
14 md

k ← md
k−1 + 1;

15 else if λk ∈ {uai}Ni=1 then
16 mu

k ← mu
k−1 − 1;

17 end if
18 U(λk+1)← U(λk) + (mu

k −md
k)(λk+1 − λk); // Compute U(λk+1) incrementally with the updated mu

k and md
k based on (4).

19 end for

points {λk}3Nk=1, therefore the derivative of U(t1) at this global minimizer is 0. Moreover, this derivative is 0 on the entire
interval Ik and the objective value U(t1) is constant on Ik. Thus, every point on Ik = (λk, λk+1) is a global minimizer.
Since U(t1) is continuous on [λk, λk+1], has derivative 0 on (λk, λk+1), and every point on (λk, λk+1) is a global minimizer,
we conclude that λk and λk+1 are global minimizers of U(t1) as well. We have just shown that in the 3N points {λk}3Nk=1,
there is a globally optimal solution of (1).

Next, we take one step further and prove, in the N points {ai}Ni=1, there is a globally optimal solution of (1). Let us
assume λk+1 is a global minimizer of U(t1). We need to show λk+1 ∈ {ai}Ni=1. For the sake of contradiction, assume
λk+1 ∈ {lai}Ni=1 ∪ {uai}Ni=1. Let us analyze the two intervals associated with λk+1, namely Ik = (λk, λk+1) and Ik+1 =
(λk+1, λk+2), and let us also analyze the derivatives of U(t1) on them. Since the derivatives of U(t1, i) on them are constant,
let us denote by U ′(Ik+1, i) and U ′(Ik, i), respectively, the derivatives of U(t1, i) at some point of Ik+1 and Ik. Define
U ′(Ik+1) and U ′(Ik) similarly. Then we have the following observations:
• If λk+1 = lai for some i, then U ′(Ik, i) = 0 and U ′(Ik+1, i) = −1, i.e., by going from Ik to Ik+1, the i-th component

function U(t1, i) enters the linear decrease regime from the constant regime. At the same time, we have U ′(Ik, j) =
U ′(Ik+1, j) for any j ̸= i; in other words, U(Ik, j) keeps the same trend (linearly decrease, linearly increase, or constant).
As a result, we have U ′(Ik) = U ′(Ik+1) + 1.

• If λk+1 = uai for some i, then U ′(Ik, i) = 1 and U ′(Ik+1, i) = 0. And we have U ′(Ik, j) = U ′(Ik+1, j) for any j ̸= i.
Similarly we have U ′(Ik) = U ′(Ik+1) + 1.

Since U ′(Ik) and U ′(Ik+1) lie in {−N, . . . ,−1, 0, 1, . . . , N}, the assumption λk+1 ∈ {lai}Ni=1 ∪ {uai}Ni=1 leads us to the
following cases:
• If U ′(Ik) ≥ 1, then we have U(λk+1) > U(λk).
• If U ′(Ik) ≤ 0, then U ′(Ik+1) ≤ −1 and we have U(λk+1) > U(λk+2).
We have shown U(λk+1) > min{U(λk), U(λk+2)}. This is a contradiction to the assumption λk+1 ∈ {lai}Ni=1 ∪ {uai}Ni=1.
Therefore, any global minimizer of U(t1) in {λk}3Nk=1 must be a point of {ai}Ni=1. The proof is complete.

In light of Proposition 1, an intuitive algorithm to solve (1) would be computing U(ai) for each i ∈ {1, . . . , N} separately;
the solution is some ai that gives the smallest objective value. This algorithm has O(N2) time complexity.

Let us show how to solve (1) in O(N logN) time. First recall that, on each interval [λk, λk+1], U(t1, i) is monotonic or
constant. Let us defineMu

k (resp. Md
k) to be the set of indices i for which U(t1, i) is increasing (resp. decreasing). Denote



1( )L t

1( ,1)L t

1( , 2)L t

1bl 1bu1lb 1ub

2bl 1bu1lb 1ub

1( , )L t i

bi
l

bi
u

il
b

iu
b 1t 1t

1i 1i1il
b t 1 iu

t b0

(a) (b)

Figure 2. (a) Illustration of L(t1, i) = minbi∈[bil,biu] L(t1, bi, i), where L(t1, bi, i) = min{|bi − t1|, ξi1}; (b) Illustration of L(t1) =∑N
i=1 L(t1, i) when N = 2. (cf . Appendix B.2).

by mu
k and md

k the respective sizes ofMu
k andMd

k. Then we can compute the value of U(λk) as follows:

U(λk) =
∑

i∈Mu
k

(λk − ai) +
∑

i∈Md
k

(ai − λk) +
∑

i∈{1,··· ,N}\{Mu
k∪Md

k}

ξi1. (2)

An important observation is that, for every k, the value U(λk+1) can be computed incrementally from U(λk):

U(λk+1) =
∑

i∈Mu
k

(λk+1 − ai) +
∑

i∈Md
k

(ai − λk+1) +
∑

i∈{1,··· ,N}\{Mu
k∪Md

k}

ξi1 (3)

= U(λk) + (mu
k −md

k)(λk+1 − λk). (4)

Algorithm 2 implements the recurrence (4) and solves (1) to global optimality. Interestingly, this recurrent formulation does
not depend on the index setsMu

k andMd
k, so we only need to update mu

k and md
k in Algorithm 2. Finally, since Algorithm 2

only consists of a sorting and scanning operation, its time complexity is O(N logN).

B.2. Lower Bound

Here we first consider the following proposition:

Proposition 2. Given a branch [α1, α2]× [β1, β1] of r1, let [bil, biu] denote the range of bi := yi1 − r1
⊤xi, specifically:

bil = min
{
yi1 − r1

⊤xi : r1 = [sinβ cosα, sinβ sinα, cosβ], α ∈ [α1, α2], β ∈ [β1, β2]
}
, (5)

biu = max
{
yi1 − r1

⊤xi : r1 = [sinβ cosα, sinβ sinα, cosβ], α ∈ [α1, α2], β ∈ [β1, β2]
}
. (6)

We can compute bil and biu in constant time.

With Proposition 2 proved in Appendix F, we can compute the bounds {bil, biu}Ni=1 in O(N) time. Moreover, Proposi-
tion 2 provides the idea of relaxing (4) in the main manuscript into the following problem:

L = min
t1∈R, bi∈[bil,biu]

N∑
i=1

min{|bi − t1|, ξi1}

= min
t1∈R, bi∈[bil,biu]

N∑
i=1

L(t1, bi, i),

(7)

where L(t1, bi, i) := min{|bi − t1|, ξi1}. Note that for any given t1 ∈ [bil, biu], we can always set bi to t1 so that L(t1, bi, i)
is minimized to 0. Now let us consider

L(t1, i) := min
bi∈[bil,biu]

L(t1, bi, i)

=


bil − t1, t1 ∈ [bil − ξi1, bil];
0, t1 ∈ [bil, biu];

t1 − biu, t1 ∈ [biu, biu + ξi1];

ξi1, otherwise.

(8)



Algorithm 3: Globally Optimal 1D TEAR Solver for Lower Bound Computation (Proposition 3).

1 Input: {bil}Ni=1, {biu}Ni=1, {lbi}Ni=1, and {ubi}Ni=1;
2 Output: A global minimizer t̂1 and the minimum value L of (9);
3 {ψk}4Nk=1 ← Sort {bil}Ni=1 ∪ {biu}Ni=1 ∪ {lbi}Ni=1 ∪ {ubi}Ni=1;
4 L(ψ1)←

∑N
i=1 ξi1; L← L(ψ1); // Use L to store the smallest lower bound so far.

5 nu0 ← 0; nd0 ← 0;
6 for k ← 1 to 4N − 1 do:
7 if ψk ∈ {bil}Ni=1 then
8 ndk ← ndk−1 − 1;
9 if L(ψk) < L then // Update L and the minimizer t̂1 once L(ψk) is smaller than L.

10 t̂1 ← ψk; L← L(ψk);
11 end if
12 else if ψk ∈ {biu}Ni=1 then
13 nuk ← nuk−1 + 1;
14 if L(ψk) < L then // Similarly to Line 9, update L and the minimizer t̂1 once L(ψk) is smaller than L.

15 t̂1 ← ψk; L← L(ψk);
16 end if
17 else if ψk ∈ {lbi}Ni=1 then
18 ndk+1 ← ndk + 1;
19 else if ψk ∈ {ubi}Ni=1 then
20 nuk+1 ← nuk − 1;
21 end if
22 L(ψk+1) = L(ψk) + (nuk − ndk)(ψk+1 − ψk); // Compute L(ψk+1) incrementally with the updated nu

k and nd
k based on (10).

23 end for

Define lbi := bil − ξi1 and ubi := biu + ξi1. Note that L(t1, i) is differentiable at any point t1 except when t1 is equal to lbi,
bil, biu, or ubi. Furthermore, at differentiable points, the derivative of L(t1, i) is either 1 or −1 or 0 (see Fig. 2a). Now we
can convert (7) into the following equivalent problem:

L = min
t1∈R

N∑
i=1

min
bi∈[bil,biu]

L(t1, bi, i)

= min
t1∈R

N∑
i=1

L(t1, i)

= min
t1∈R

L(t1),

(9)

where L(t1) is defined to be the sum of L(t1, i), i.e., L(t1) =
∑N

i=1 L(t1, i). According to the derivation property of L(t1, i),
the derivative of L(t1) at differentiable points lies in {−N, . . . ,−1, 0, 1, . . . , N}. Based on the above notions, we have

Proposition 3. In the 2N points {bil}Ni=1 ∪ {biu}Ni=1, there is a globally optimal solution of (9). And (9) can be solved by
Algorithm 3 in O(N logN) time.

Proof. Let {ψk}4Nk=1 be a sorted version of {bil}Ni=1 ∪ {biu}Ni=1 ∪ {lbi}Ni=1 ∪ {ubi}Ni=1. For each k = 1, · · · , 4N , define
the open interval Jk := (ψk, ψk+1). Without loss of generality, we assume ψk ̸= ψk+1 and therefore Jk is not empty.
Similarly to U(t1, i) in Appendix B.1, the derivative of L(t1, i) on every interval Jk is constant (say, 0,−1, or 1); therefore
the derivative of L(t1) is also constant on every interval Jk similarly to U(t1) in Appendix B.1 (see Fig. 2b). Since L(t1)
shares similar derivation properties with U(t1), we can easily infer that in the 4N endpoints {ψk}4Nk=1, there is a globally
optimal solution of (9).

In the following we take one step further and prove that in the 2N points {bil}Ni=1 ∪ {biu}Ni=1, there is a globally optimal
solution of (9). Assume that ψk+1 is a global minimizer of L(t1). We need to show ψk+1 /∈ {lbi}Ni=1 ∪ {ubi}Ni=1. For



the sake of contradiction, suppose that ψk+1 ∈ {lbi}Ni=1 ∪ {ubi}Ni=1. Consider the two intervals associated with ψk+1,
namely Jk = (ψk, ψk+1) and Jk+1 = (ψk+1, ψk+2). Since the derivatives of L(t1) on them are constant, let us denote
by L′(Ik+1) and L′(Ik), respectively, the derivatives of L(t1) at some point of Jk+1 and Jk. Then we can observe that,
as long as ψk+1 belongs to {lbi}Ni=1 or {ubi}Ni=1, it always holds that L′(Jk) = L′(Jk+1) + 1 (similarly to the equality
U ′(Ik) = U ′(Ik+1)+1 in Appendix B.1). SinceL′(Ik+1) andL′(Ik) also lie in {−N, . . . ,−1, 0, 1, . . . , N}, the supposition
ψk+1 ∈ {lbi}Ni=1 ∪ {ubi}Ni=1 lead to the following cases:
• If L′(Jk) ≥ 1, then we have L(ψk+1) > L(ψk).
• If L′(Jk) ≤ 0, then L′(Ik+1) ≤ −1 and we have L(ψk+1) > L(ψk+2).
We have shown L(ψk+1) > min{L(ψk), L(ψk+2)}. This is a contradiction to the assumption that ψk+1 is a global mini-
mizer. Therefore, any global minimizer of L(t1) in {ψk}4Nk=1 must be a point of {bil}Ni=1 ∪ {biu}Ni=1.

Now, to find a global minimizer of (9), it remains to evaluate the objective value of (9) at all points {bil}Ni=1 ∪ {biu}Ni=1

and pick one point that yields the minimum objective. Similarly to the computation of U(λk) in (4), we can compute L(ψk)
incrementally using the formula

L(ψk+1) = L(ψk) + (nuk − ndk)(ψk+1 − ψk), (10)

where nuk and ndk represent the numbers of increasing and decreasing terms of {L(t1, i)}Ni=1 at Jk, respectively. The details
are in Algorithm 3. In particular, Algorithm 3 iterates over {ψk}4Nk=1 to update nuk and ndk, so as to compute L(ψk+1) based
on (10). At each iteration we can update L by comparing L(ψk+1) and L, and when the loop finishes, the minimum value L
is discovered, associated with the optimal solution stored in t̂1.

C. Bounds for TEAR-2
In this section, we show that we can conduct a simple reparameterization on TEAR-2, so as to solve it using similar bound
computation methods that we develop for TEAR-1 (see Appendix B). Note that the extra constraint r⊤2 r̂1 = 0 in TEAR-2
restricts the r2 to be determined by only 1 degree of freedom. Then we can substitute the decision variable r2 in TEAR-2
with the variable α ∈ [0, 2π) in the constraint r2 = [sinβ cosα, sinβ sinα, cosβ]⊤ ∈ S2, i.e.,

min
α∈[0,2π),t2∈R

∑
i∈Î1

min{|yi2 − r⊤2 xi − t2|, ξi2}

s.t. r⊤2 r̂1 = 0

r2 = [sinβ cosα, sinβ sinα, cosβ]⊤

(11)

Therefore, we can branch over the 1-dimension region [0, 2π) to search for the globally optimal solution. Specifically, given
a branch [α1, α2], we consider the following upper and lower bounds:
Upper Bound. We choose the center α̇ of [α1, α2] to compute an upper bound. Then the r2 can be solved by combining the
constraints in (11) and we denote it by ṙ2. Let ai2 := yi2 − ṙ2

⊤xi, the upper bound can be computed as follows:

min
t2∈R

∑
i∈Î1

min{|ai2 − t2|, ξi2}. (12)

Obviously, (12) shares the same problem structure with (1). Therefore we can directly call Algorithm 2 to get a globally
optimal solution of (12).
Lower Bound. Based on the constraints on r2 in (11), it is clear that β is restricted to an available range on the given
branch [α1, α2]. Let [β1, β2] denotes this range and bi2 := yi2 − r⊤2 xi, we can compute the range [bli2, b

u
i2] of bi2 based on

Proposition 2. Then it suffices to relax (11) into the following problem for a lower bound:

min
t2∈R,bi2∈[bli2,b

u
i2]

∑
i∈Î1

min{|bi2 − t2|, ξi2}. (13)

Note that (13) and (7) share the same structure, therefore we can adopt Algorithm 3 to solve (13) with global optimality.



Algorithm 4: Interval Stabbing (Theorem 1).

1 Input: Z = {[zpl, zpu]}Pp=1;
2 Output: Best stabber z∗ and the corresponding number of stabbed intervals T ∗;
3 Ẑ ← Sort all the endpoints in Z;
4 count← 0; T ∗ ← count;
5 for p← 1 to 2P do:
6 if Ẑ(p) is a left endpoint then
7 count← count+ 1; // If the current stabber moves to a left endpoint, one more interval is stabbed.
8 if count > T ∗ do: // Update T ∗ and the best stabber z∗ once the current number of stabbed intervals count is larger than T ∗.

9 z∗ ← Ẑ(p); T ∗ ← count;
10 end if
11 else
12 count← count− 1; // If the current stabber moves to a right endpoint, one less interval is stabbed.
13 end if
14 end for

D. Bounds for CM-1
Before introducing the bounds for CM-1, we first present a relevant and widely used algorithm, called interval stabbing.

Theorem 1. (Interval Stabbing) Given a set of intervals Z = {[zpl, zpu]}Pp=1, consider to find some stabber z that interacts
with the most number of intervals, i.e.,

max
z∈R

P∑
p=1

1 (z ∈ [zpl, zpu]) , (14)

where 1(·) denotes the indicator function. Then Algorithm 4 solves (14) in O(P logP ) time.

D.1. Upper Bound

Given a branch [r1, r1] of r1, e.g., [α1, α2]× [β1, β1], we define bi := yi1− r⊤1 xi as Appendix B.2. Based on Proposition 2,
the range [bil, biu] of bi can be easily computed. Moreover, we have the following proposition:

Proposition 4. We can compute an upper bound UCM of CM-1 via solving

UCM = max
t1∈R

N∑
i=1

1 (tj ∈ [bil − ξi1, biu + ξi1]) . (15)

Specifically, UCM can be computed in O(N logN) time by Algorithm 4.

Proof. We first consider CM-1 constrained on the branch [r1, r1], that is,

max
t1∈R

max
r1∈[r1, r1]

N∑
i=1

1
(
|yi1 − r⊤1 xi − t1| ≤ ξi1

)
. (16)

To compute an upper bound of (16), we can relax it into

max
t1∈R

N∑
i=1

max
r1∈[r1, r1]

1
(
|yi1 − r⊤1 xi − t1| ≤ ξi1

)
. (17)



With the notation bi := yi1 − r1
⊤xi and the bounds bil and biu in Proposition 2, we have

max
t1∈R

N∑
i=1

max
r1∈[r1, r1]

1
(
|yi1 − r⊤1 xi − t1| ≤ ξi1

)
=max

t1∈R

N∑
i=1

max
bi∈[bil,biu]

1 (bi − ξi1 ≤ t1 ≤ bi + ξi1) (18a)

≤max
t1∈R

N∑
i=1

1 (bil − ξi1 ≤ t1 ≤ biu + ξi1) (18b)

=max
t1∈R

N∑
i=1

1 (t1 ∈ [bil − ξi1, biu + ξi1]) = UCM . (18c)

Thus UCM is indeed an upper bound of CM-1. Note that (18c) is exactly an interval stabbing problem as (14), therefore
UCM can be solved in O(N logN) time by Algorithm 4.

D.2. Lower Bound

We choose the center ṙ1 of the given branch [r1, r1] to compute a lower bound LCM of CM-1, i.e.,

LCM = max
t1∈R

N∑
i=1

1
(
|yi1 − ṙ⊤1 xi − t1| ≤ ξi1

)
. (19)

Define ai := yi1 − ṙ⊤1 xi, lai := a1 − ξi1, and uai := a1 + ξi1. As in Appendix D.1, let us rewrite (19) as follows:

LCM = max
t1∈R

N∑
i=1

1 (ai − ξi1 ≤ t1 ≤ ai + ξi1) (20a)

= max
t1∈R

N∑
i=1

1 (yi1 − lai ≤ t1 ≤ uai) (20b)

= max
t1∈R

N∑
i=1

1 (ti ∈ [lai, uai]) . (20c)

We have transformed (19) into an interval stabbing problem (20c). Therefore we can compute the lower bound LCM in
O(N logN) time by Algorithm 4.

E. Bounds for TLS-1
E.1. Upper Bound

Similarly to Appendix B.1, we choose the center ṙ1 of the given branch [r1, r1] to compute an upper bound UTLS of this
branch. Let ai := yi1 − ṙ⊤1 xi as Appendix B.1 and Appendix D.2, we have

UTLS = min
t1∈R

N∑
i=1

min{(ai − t1)2, ξ2i1}

= min
t1∈R

UTLS(t1),

(21)

where UTLS(t1) is defined to be the sum of UTLS(t1, i) := min{(ai − t1)2, ξ2i1}, that is UTLS(t1) :=
∑N

i=1 UTLS(t1, i)).
We begin by the following auxiliary result (easy to prove):

Theorem 2. Consider the following problem:

min
d∈[dl, du]

Q∑
q=1

(γq − d)2. (22)



1al 1au

2al 2auai
l

ai
u

1( , )TLS
U t i

1( )TLS
U t

1( ,1)TLS
U t

1( , 2)TLS
U t

1ti
a

2

1i

2

1( )
i
a t

2

1i

1t

(a) (b)

Figure 3. (a) Illustration of UTLS(t1, i) = min{(ai − t1)
2, ξ2i1}; (b) Illustration of UTLS(t1) =

∑N
i=1 UTLS(t1, i) when N = 2. (cf .

Appendix E.1).

Let d̃ := 1
Q

∑Q
q=1 γq , then the global optimizer d̂ to (22) is given as follows:

d̂ =


d̃, d̃ ∈ [dl, du];

du, d̃ > du;

dl, d̃ < dl.

(23)

Let us now consider computing UTLS in (21). Define lai := ai − ξi1, uai := ai + ξi1. Let {λ}2Nk=1 be a sorted version of
the 2N numbers {lai}Ni=1 ∪ {uai}Ni=1. On each interval Ik := [λk, λk+1], it is clear that UTLS(t1, i) can be only the part of
quadratic (ai − t1)2 or the constant ξ2i1 (see Fig. 3b).

Based on Theorem 2 and the above notation, we develop Algorithm 5 to get the globally optimal solution of (21) in
O(N logN) time. Algorithm 5 iterates over {λk}2Nk=1 and computes the minimal value Uk of UTLS(t1) on each interval
Ik. Obviously the minimum Uk in {Uk}2N−1

k=1 is exactly the minimum value UTLS , and next we will show that it can be
computed incrementally during the iteration. Define Uq

k to be the minimal value of the sum of UTLS(t1, i)s being quadratic
on each interval Ik, as well as U c

k to be sum of UTLS(t1, i)s being constant. It is clear that Uk = Uq
k + U c

k . Based on
Theorem 2, we have

Uq
k =

∑
m∈Mq

k

(am − t1k)2

=
∑

m∈Mq
k

am
2 +Mq

k · t1k
2 − 2t1k ·Mq

k · ak,
(24)

where Mq
k is defined to be the set of indices of UTLS(t1, i)s being quadratic on the interval Ik, t1k is the corresponding

value of t1 leading to Uq
k in Ik (that is, the d̂ given by Theorem 2), Mq

k is the set size ofMq
k, and ak is the average value of

related ais inMq
k. At each iteration, the index setMq

k differs fromMq
k−1 by at most one element. More precisely:

• If λk ∈ {lai}Ni=1, thenMq
k has one more index i thanMq

k−1, and for this index i, the component UTLS(t1, i) is quadratic
on interval Ik. In this case, we say we enter a quadratic regime.

• If λk ∈ {uai}Ni=1, thenMq
k has one less index i thanMq

k−1, and for this index i, the component UTLS(t1, i) is constant
(or no longer quadratic) on interval Ik. In this case, we say we leave a quadratic regime.

In either case, we can update Uq
k from Uq

k−1 as follows:

ak =


Mq

k−1

Mq
k−1+1

· ak−1 +
1

Mq
k−1+1

· ak, λk ∈ {lai}Ni=1;
Mq

k−1

Mq
k−1−1

· ak−1 − 1
Mq

k−1−1
· ak, λk ∈ {uai}Ni=1;

(25a)

Uq
k − U

q
k−1 =

{
ak

2 +Mq
k · t1k · (t1k − 2ak)−Mq

k−1 · t1(k−1) · (t1(k−1) − 2ak−1), λk ∈ {lai}Ni=1;

−ak2 +Mq
k · t1k · (t1k − 2ak)−Mq

k−1 · t1(k−1) · (t1(k−1) − 2ak−1), λk ∈ {uai}Ni=1.
(25b)

Based on (25b), we can easily compute Uq
k in constant time (Lines 10-14 and 18-22) at each iteration. As to U c

k , at each
iteration it also only differ with U c

k−1 from one element, that is, containing one less constant term when λk belongs to
{lai}Ni=1, or containing one more constant term when λk belongs to {uai}Ni=1. Therefore U c

k can be also incrementally
computed by adding or subtracting the threshold term at each iteration (Lines 15 and 23). Then Uk can be computed by



Algorithm 5: Globally Optimal 1D TLS Solver for Upper Bound Computation (21).

1 Input: {lai}Ni=1, {uai}Ni=1, and {ai}Ni=1;
2 Output: A global minimizer t1′ and the minimum value UTLS of (21);
3 {λk}2Nk=1 ← Sort {lai}Ni=1 ∪ {uai}Ni=1;
4 U0 ←

∑N
i=1 ξ

2
i1; UTLS ← U0;

5 Uq
0 ← 0; Mq

0 ← 0; a0 ← 0; U c
0 ← U0;

6 for k ← 1 to 2N − 1 do:
7 Ik ← [λk, λk+1];
8 if λk ∈ {lai}Ni=1 then
9 Mq

k ←Mq
k−1 + 1; // Since λk ∈ {lai}Ni=1, we enter a quadratic regime.

10 kin ← Index of λk in {lai}Ni=1;
11 ak ← kthin element in {ai}Ni=1;

12 ak ←
Mq

k−1

Mq
k
· ak−1 +

1
Mq

k
· ak;

13 t1k ← Compare ak with Ik based on (23); // Compute the minimizer t1k on the interval Ik (see Theorem 2).
14 Uq

k ← Uq
k−1 + ak

2 +Mq
k · t1k · (t1k − 2ak)−Mq

k−1 · t1(k−1) · (t1(k−1) − 2ak−1);
15 U c

k ← U c
k−1 − ξ2kin1

;
16 else if λk ∈ {uai}Ni=1 then
17 Mq

k ←Mq
k−1 − 1; // Since λk{uai}Ni=1, we leave a quadratic regime.

18 kout ← Index of λk in {uai}Ni=1;
19 ak ← kthout element in {ai}Ni=1;

20 ak ←
Mq

k−1

Mq
k
· ak−1 − 1

Mq
k
· ak;

21 t1k ← Compare ak with Ik based on (23); // Compute the minimizer t1k on th interval Ik (similarly to Line 13).
22 Uq

k ← Uq
k−1 − ak2 +Mq

k · t1k · (t1k − 2ak)−Mq
k−1 · t1(k−1) · (t1(k−1) − 2ak−1);

23 U c
k ← U c

k−1 + ξ2kout1
;

24 end if
25 Uk ← Uq

k + U c
k ;

26 if Uk < UTLS then // Update UTLS and the global minimizer t1′ once Uk is smaller than UTLS .

27 t1
′ ← t1k; UTLS ← Uk;

28 end if
29 end for

summing Uq
k and U c

k at each iteration. Since the sorting operation leads to O(N logN) time complexity and the iteration
leads to O(N) time complexity, the UTLS can be computed in O(N logN) time by the proposed Algorithm 5. In addition,
based on the comparison at each iteration (Lines 26-27), Algorithm 5 can solve (21) to global optimality.

E.2. Lower Bound

Let bi := yi1 − r1
⊤xi as Appendix B.2 and Appendix D.1, then the range [bil, biu] of bi in the given branch can be solved

by using Proposition 2. To compute a lower bound, it suffices to relax TLS-1 into the following problem:

LTLS = min
t1∈R, bi∈[bil,biu]

N∑
i=1

min{(bi − t1)2, ξ2i1}

= min
t1∈R, bi∈[bil,biu]

N∑
i=1

LTLS(t1, bi, i),

(26)



1( )TLS
L t

1( ,1)TLS
L t

1( , 2)TLS
L t

1bl 1bu1lb 1ub

2bl 1bu1lb 1ubbi
l

bi
u

il
b

iu
b

1( , )TLS
L t i

1t

2

1i

2

1i

2

1( )
il
b t 0

2

1( )
iu
b t

1t

(a) (b)

Figure 4. (a) Illustration of LTLS(t1, i) = minbi∈[bil,biu] LTLS(t1, bi, i), where LTLS(t1, bi, i) = min{(bi − t1)
2, ξ2i1}; (b) Illustration

of LTLS(t1) =
∑N

i=1 LTLS(t1, i) when N = 2. (cf . Appendix E.2).

where LTLS(t1, bi, i) := min{(bi − t1)
2, ξ2i1}. Note that ∀t1 ∈ [bil, biu], bi could be set by t1 so as to minimize

LTLS(t1, bi, i), accordingly we define

LTLS(t1, i) = min
bi∈[bil,biu]

LTLS(t1, bi, i)

=


(bil − t1)2, ti ∈ [bil − ξi1, bil];
0, ti ∈ [bil, biu];

(biu − t1)2, ti ∈ [biu, biu + ξi1];

ξ2i1, otherwise.

(27)

Then (26) can be transformed equivalently to:

LTLS = min
t1∈R

N∑
i=1

min
bi∈[bil,biu]

LTLS(t1, bi, i)

= min
t1∈R

N∑
i=1

LTLS(t1, i)

= min
t1∈R

LTLS(t1),

(28)

where LTLS(t1) is defined to be the sum of LTLS(t1, i), that is LTLS(t1) :=
∑N

i=1 LTLS(t1, i). Define lbi := bil − ξi1,
ubi := biu + ξi1, and LTLS(t1) :=

∑N
i=1 LTLS(t1, i). Let {ψk}4Nk=1 be a sorted version of {bil}Ni=1 ∪ {biu}Ni=1 ∪ {lbi}Ni=1 ∪

{ubi}Ni=1. Then on each interval Jk := [ψk, ψk+1], it is obvious that LTLS(t1, i) can be only one the two quadratics
{(bil − t1)2, (biu − t1)2} or one of the two constants {0, ξ2i1} (see Fig. 4). In the following, we develop Algorithm 6 to get
the globally optimal solution of (28) with O(N2) time complexity based on the above notions.

Specifically, we iterate over {ψk}4Nk=1 to compute the minimal valueLk ofLTLS(t1) on each intervalJk, and the minimum
one in {Lk}4N−1

k=1 is exactly the LTLS . On each Jk, we define a set N q
k to store the indices of LTLS(t1, i)s being quadratic,

as well as a variable Lc
k to store the sum of LTLS(t1, i)s being constant. At each iteration, the index set N q

k differ from
N q

k−1 by at most one element and the variable Lc
k can be updated from Lc

k−1. Suppose k′ is the index of ψk in one of the sets
{lbi}Ni=1/{bil}Ni=1/{biu}Ni=1/{ubi}Ni=1, we have
• If ψk ∈ {lbi}Ni=1, then N q

k has one more index k′ than N q
k−1, and Lc

k has one less constant term ξ2k′ than Lc
k′ . In this case,

similarly to Appendix E.1, we say we enter a quadratic regime.
• If ψk ∈ {bil}Ni=1, thenN q

k has one less index k′ thanN q
k−1, and Lc

k equals to Lc
k−1. In this case, similarly to Appendix E.1,

we say we leave a quadratic regime.
• If ψk ∈ {biu}Ni=1, then N q

k has one more index k′ than N q
k−1, and Lc

k equals to Lc
k−1. In this case, we enter a quadratic

regime.
• If ψk ∈ {ubi}Ni=1, thenN q

k has one less index k′ thanN q
k−1, and Lc

k has one more constant term ξ2k′ than Lc
k′ . In this case,

we leave a quadratic regime.
In either cases, N q

k and Lc
k can be updated. Then we can compute the minimal value Lq

k of the sum of LTLS(t1, i)s that
i ∈ N q

k (quadratic terms) based on Theorem 2 with at most O(N) time complexity, and furthermore the minimal value



Algorithm 6: Globally Optimal 1D TLS Solver for Lower Bound Computation (28).

1 Input: {bil}Ni=1, {biu}Ni=1,{lbi}Ni=1, and {ubi}Ni=1;
2 Output: A global minimizer t̂1 and the minimum value LTLS of (28);
3 {ψk}4Nk=1 ← Sort {bil}Ni=1 ∪ {biu}Ni=1 ∪ {lbi}Ni=1∪ {ubi}Ni=1;
4 L0 ←

∑N
i=1 ξ

2
i1; LTLS ← L0;

5 N q
0 ← ∅; Lc

0 ← L0;
6 for k ← 1 to 4N − 1 do:
7 Jk = [λk, λk+1];
8 if ψk ∈ {lbi}Ni=1 then
9 k′ ← Index of ψk in {lbi}Ni=1;

10 N q
k ← N

q
k−1 ∪ {k′}; // Since ψk ∈ {lbi}Ni=1, we enter a quadratic regime.

11 Lc
k ← Lc

k−1 − ξ2kin1
;

12 else if ψk ∈ {bil}Ni=1 then
13 k′ ← Index of ψk in {bil}Ni=1;
14 N q

k ← N
q
k−1 \ {k′}; // Since ψk ∈ {bil}Ni=1, we leave a quadratic regime.

15 Lc
k ← Lc

k−1;
16 else if ψk ∈ {biu}Ni=1 then
17 k′ ← Index of ψk in {biu}Ni=1;
18 N q

k ← N
q
k−1 ∪ {k′}; // Since ψk ∈ {biu}Ni=1, we enter a quadratic regime.

19 Lc
k ← Lc

k−1;
20 else if ψk ∈ {ubi}Ni=1 then
21 k′ ← Index of ψk in {ubi}Ni=1;
22 N q

k ← N
q
k−1 \ {k′}; // Since ψk ∈ {ubi}Ni=1, we leave a quadratic regime.

23 Lc
k ← Lc

k−1 + ξ2kout1
;

24 end if
25 t̂1k, L

q
k ← mint1k∈Jk

∑
n∈N q (an − t1k)2 based on Theorem 2; // Compute the minimizer t̂1k and minimal value Lq

k of the
sum of quadratic terms on the interval Jk (see Theorem 2).

26 Lk ← Lq
k + Lc

k;
27 if Lk < LTLS then // Update LTLS and the global minimizer t̂1 once Lk is smaller than LTLS .

28 t̂1 ← t̂1k; LTLS ← Lk;
29 end if
30 end for

Lk = Lq
k + Lc

k on each interval Jk. Based on the comparison at each iteration (Lines 27-28), Algorithm 6 can solve (28) to
global optimality with O(N2) time complexity.

F. Proof of Proposition 2
Let xi := [xi1, xi2, xi3]

⊤, we have

bi = yi1 − r1
⊤xi

= yi1 − xi1 sinβ cosα− xi2 sinβ sinα− xi3 cosβ
= yi1 − (xi1 cosα+ xi2 sinα) sinβ − xi3 cosβ

= yi1 −
√
xi12 + xi22 cos (α− α∗) sinβ − xi3 cosβ,

(29)

where α∗ ∈ [0, π] denotes the arc-tangent angle of xi2/xi1. Now consider the following lemma:



Lemma 1. Given θ ∈ [θ1, θ2] ⊆ [0, π] and ϕ ∈ [0, π], define f(θ) := cos(θ − ϕ), there is

f(θ) ∈


[f(θ1), f(θ2)], if ϕ ≥ θ2;
[f(θ2), f(θ1)], if ϕ ≤ θ1;
[min{f(θ1), f(θ2)}, 1], otherwise.

(30)

Else if [θ1, θ2] ⊆ (π, 2π], there is

f(θ) ∈


[f(θ2), f(θ1)], if ϕ ≥ θ2;
[f(θ1), f(θ2)], if ϕ ≤ θ1;
[−1,max{f(θ1), f(θ2)}], otherwise.

(31)

Based on Lemma 1 (easy to prove), the range of cos (α− α∗) in (29) can be computed and we define it by [Ψl, Ψu].
Since sinβ ≥ 0, we have

yi1−
√
xi12 + xi22Ψu sinβ − xi3 cosβ ≤ bi ≤ yi1 −

√
xi12 + xi22Ψl sinβ − xi3 cosβ

⇔ yi1−
√
(xi12 + xi22)Ψu

2 + xi32 cos (β − β∗
l ) ≤ bi ≤ yi1 −

√
(xi12 + xi22)Ψl

2 + xi32 cos (β − β∗
u),

(32)

where β∗
l , β

∗
u ∈ [0, π] denote the arc-tangent angles of

(√
xi12 + xi22Ψu

)
/xi3 and

(√
xi12 + xi22Ψl

)
/xi3, respectively.

Note that the ranges of cos (β − β∗
l ) and cos (β − β∗

u) can be solved based on Lemma 1. Denote γul as the upper bound of
cos (β − β∗

l ), γ
l
u as the lower bound of cos (β − β∗

u), we have

bil = yi1 − γul
√

(xi12 + xi22)Ψu
2 + xi32 ≤ bi ≤ yi1 − γlu

√
(xi12 + xi22)Ψl

2 + xi32 = biu. (33)

Since Ψl, Ψu, γul , and γlu in (33) can be easily computed based on Lemma 1, we can therefore get the range [bil, biu] of bi
in (29) in constant time.

G. Extra Experimental Details

Hyperparameter Setup. In Sec. 2.2 of the main manuscript, we decomposed the original 6-dimensional problem, TEAR,
into two subproblems, TEAR-1 and TEAR-2. TEAR has a threshold hyperparameter ξi, as is typical in many prior works.
Moreover, TEAR-1 has its own threshold ξi1 and TEAR-2 has ξi2.

However, this is not to say our method requires more hyperparameters than prior works. In fact, given the commonly used
parameter ξi, we can choose ξi1 and ξi2 relatively easily, and here is how we do it. First, we simply set ξi1 to be equal to
ξi. Second, recall the optimal solution (r̂, t̂1) and the associated inlier indices Î1 defined in (1) in the main manuscript. For
each i ∈ Î1, we set ξi2 to ξi − |yi1 − r̂⊤1 xi − t̂1|. Our experiments justify the choices of the hyperparameters. In addition,
we set the minimal branch resolution in the BnB part of our method as 1e-3. As to TR-DE [1], we set the resolution as 5e-2
to guarantee its experimental time limited in five days (otherwise it costs averagely more than 200s for each real-world pair).
Dataset Details. For the three real-world datasets (3DMatch [7], KITTI [4], and ETH [6]), we follow [1, 2, 5] to set the inlier
threshold ξi based on the downsampling voxel size. Specifically, ξi is set to 10 cm for the 3DMatch Dataset [7], 60 cm for
the KITTI Dataset [4], and 30 cm for the ETH Dataset [6], respectively.

In the Stanford 3D scanning dataset [3], we used 5 objects. And in Tab. 4 of the main manuscript, we reported the number
of points each object contains, namely, Armadillo has 105 points, Happy Buddha has 5 × 105 points, Asian Dragon has
106 points, Thai Statue has 4 × 106 points, and Lucy has 107 points. We emphasize that each of these objects has slightly
more points, and for clarity we downsampled them a little bit. In fact, Armadillo has approximately 1.7× 105 points, Happy
Buddha has approximately 5.4×105 points, Asian Dragon has approximately 3.6×106 points, Thai Statue has approximately
4.9× 106 points, and Lucy has approximately 1.4× 107 points.
Related Translation Errors of Fig. 7. Recall that in Fig. 7 of the main manuscript, we report the average rotation errors of
the unscalable methods in Tab. 4 of the manuscript evaluated on the downsampled data and our TEAR on the original data.
As shown in Fig. 5, we additionally report the related average translation errors.



(a) (b)

Figure 5. Average translation errors of other methods in Tab. 4 of the manuscript taking as inputs the 104 points downsampled from Lucy
that originally has 107 point pairs (Fig. 5a: 99.8% outliers; Fig. 5b: 95% outliers). TEAR runs on the original 107 input point pairs. 20
trials.

References
[1] Wen Chen, Haoang Li, Qiang Nie, and Yun-Hui Liu. Deterministic point cloud registration via novel transformation decomposition.

In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. 13
[2] Zhi Chen, Kun Sun, Fan Yang, and Wenbing Tao. SC2-PCR: A second order spatial compatibility for efficient and robust point cloud

registration. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. 13
[3] Brian Curless and Marc Levoy. A volumetric method for building complex models from range images. In Annual Conference on

Computer Graphics and Interactive Techniques, 1996. 13
[4] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. International Journal of

Robotics Research, 2013. 13
[5] Xinyi Li, Yinlong Liu, Hu Cao, Xueli Liu, Feihu Zhang, and Alois Knoll. Efficient and deterministic search strategy based on residual

projections for point cloud registration. arXiv:2305.11716 [cs.CV], 2023. 13
[6] Pascal Willy Theiler, Jan Dirk Wegner, and Konrad Schindler. Keypoint-based 4-points congruent sets–automated marker-less regis-

tration of laser scans. ISPRS Journal of Photogrammetry and Remote Sensing, 96:149–163, 2014. 13
[7] Andy Zeng, Shuran Song, Matthias Nießner, Matthew Fisher, Jianxiong Xiao, and T Funkhouser. 3DMatch: Learning the matching of

local 3D geometry in range scans. In IEEE Conference on Computer Vision and Pattern Recognition, page 4, 2017. 13


	. The General Branch-and-bound Algorithm
	. Bounds for TEAR-1
	. Upper Bound
	. Lower Bound

	. Bounds for TEAR-2
	. Bounds for CM-1
	. Upper Bound
	. Lower Bound

	. Bounds for TLS-1
	. Upper Bound
	. Lower Bound

	. Proof of prop:LB-range
	. Extra Experimental Details

