Appendix
Note: All references to figures or tables identified by

Arabic numerals point to the corresponding figures or ta-
bles in the main text.

A. More Implementation Details

In our reconstruction and calibration, apart from the Tem-
poral Information Block proposed by us, the partitioning
of the remaining network components remains consistent
with PTQD [1] and Q-Diffusion [4] (i.e., Residual Bot-
tleneck Blocks, Attention Blocks, and the remaining lay-
ers). Specifically, for the reconstruction of the Residual
Bottleneck Block, we freeze the quantization parameters of
the embedding layer, and these parameters are only
tuned in the reconstruction within the Temporal Informa-
tion Block.

Additionally, the quantization settings are kept consis-
tent with Q-Diffusion and PTQD.

B. Activation Range Variations in Finite Set

We analyze activation value ranges across all time steps in
sampling data-unrelated components, e.g., time embed
and embedding layers for diffusion models. In Fig. I,
it is evident that activation ranges vary notably among dif-
ferent time steps within these components. This observation
suggests that the activation ranges within the same layer un-
dergo considerable changes with varying time steps. Fortu-
nately, the activations in the Time Information Block belong
to a finite set, providing us the opportunity to conduct an ac-
curate calibration for each time step.

C. Inappropriate Calibration Target

In this part, we further conduct experiments to provide
the clues that the inappropriate reconstruction target also
results in an inappropriate calibration. In the previous
works, they calibrate the embedding layers along
with the corresponding Residual Bottleneck Blocks. On
the contrary, we freeze the quantized parameters of the
embedding layers during the calibration process with
a simple Min-max [7] initialization, which separates the cal-
ibration of embedding layers as alone. The experi-
mental results in Tab. I demonstrate that without calibrat-
ing these layers inside the Residual Bottleneck Block can
achieve better results. This confirms that the inappropri-
ate calibration target leads to the suboptimal tuning of the
quantization parameters.

D. Unconditional Generation on

CIFAR-10

In this section, we conduct more experiments for uncondi-
tional image generation on CIFAR-10 32 x 32. As shown in

Image

Table 1. FID and sFID on LSUN-Bedrooms 256 x 256 [11] for
LDM-4. Prev represents BRECQ, the same as Tab. 1. Freeze de-
notes our trial here.

Methods Bits (W/A) FID| sFID]

Full Prec. 32/32 2.98 7.09

Prev 8/8 7.51 12.54
Freeze 8/8 6.87 (-0.64) 10.12 (-2.42)
Prev 4/8 9.36 22.73

Freeze 4/8 8.06 (-1.30) 18.47 (-4.26)

Fig. II, our methods still achieve comprehensive improve-
ments in terms of IS and FID compared to the existing
SOTA. However, due to the lower resolution and simplicity
of the images in this dataset, existing methods show mini-
mal performance degradation, so the results we obtain may
not be as pronounced.

Table II. Quantization results for unconditional image generation
with DDIM on CIFAR-10 32 x 32.

CIFAR-10 32 x 32

Methods Bits (W/A)

ING FID|
Full Prec. 32/32 9.04 4.23
PTQ4DM* [8] 4/32 9.02 5.65
Q-Diffusiont [4] 4/32 8.78 5.08
TDQ [9] 4/32 - -
TFMQ-DM (Ours) 4/32 9.14 (+0.12) 4.73 (-0.35)
PTQ4DM [8] 8/8 9.02 19.59
Q-Diffusiont [4] 8/8 8.89 4.78
TDQ [9] 8/8 8.85 5.99
TFMQ-DM (Ours) 8/8 9.07 (+0.05) 4.24 (-0.54)
PTQ4DM* [8] 4/8 8.93 5.14
Q-Diffusiont [4] 4/8 9.12 4.98
TDQ [9] 4/8 - -
TFMQ-DM (Ours) 4/8 9.13 (+0.01) 4.78 (-0.20)

E. Additional Effect of TIAR

As shown in Fig. 5, both of our proposed methods for LDM-
4 on LSUN-Bedrooms 256 x 256 significantly reduce tem-
poral feature errors, thereby alleviating temporal feature
disturbance to a great extent. In this section, we conduct
a detailed analysis of the cosine similarity between the out-
puts of the ™ Residual Bottleneck Blocks before and af-
ter quantization. We compare the results obtained with our
TIAR and PTQD under w4a8 quantization, where 7 = 8 and
T = 200 (the same as the settings in Fig. 5). From Fig. II,
it can be observed that our approach significantly reduces
output errors of the Residual Bottleneck Block compared to
PTQD. However, it is essential to note that the error at this
point involves the accumulated errors from multiple denois-
ing iterations in diffusion models. Since Fig. 5 is not subject
to the impact of accumulated errors, the trends of the lines
in the two graphs may exhibit slight differences.
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Figure 1. Activation ranges within sampling data-unrelated components for LDM-4 on LSUN-Bedrooms 256 x 256 with 50 denoising
steps. We randomly select 4 linear or convolutional layers’ activations in these components to demonstrate the range variation.
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Figure II. Cosine similarity of the Residual Bottleneck’s outputs
across different PTQ Methods.

F. Inference Cost of TSC

In this section, we assess the inference overhead of our
TFMQ-DM method on real hardware, specifically the
Intel® Xeon® Gold 6248R Processor. All floating-point
and quantized operations are implemented using Intel’s
OpenVINO toolkit '. As illustrated in Table III, in com-
parison to the UNet quantized with the built-in w8a8 quan-
tization method in the OpenVINO toolkit, our approach re-
sults in a memory overhead of less than 0.076%, yielding a
2.38x acceleration compared to the original floating-point
model. Moreover, our method introduces less than 0.5% ad-
ditional latency compared to the built-in w8a8 quantization

'0penVINO toolkit

in the OpenVINO toolkit.

Table III. Inference analysis of Stable Diffusion with 50 denoising
time-steps on Intel CPU.

Methods Bits (W/A) UNet Size (Mb) Latency (s) Speedup
Full Prec. 32/32 3278.81 81.01

OpenVINO 8/8 821.15 33.93 2.39%
TFMQ-DM 8/8 821.77 34.07 2.38x

G. Study of Sampling with Advanced Samplers

Apart from employing the DDIM sampler [10], we also uti-
lize a variant of DDPM [2] called PLMS [5] on the CelebA-
HQ 256 x 256 dataset [3]. This better demonstrates the
superiority of our TFMQ-DM framework compared to pre-
vious works. From Tab. IV, the introduced TFMQ-DM sub-
stantially reduces FID and sFID, surpassing PTQD by mar-
gins of 12.40 and 7.09, respectively.

Table IV. Quantization results for unconditional image generation
with PLMS on CelebA-HQ 256 x 256.

CelebA-HQ 256 x 256

Methods Bits (W/A)
SsFID|,
Full Prec. 32/32 8.92 10.42
Q-Diffusion [4] 4/8 24.31 22.11
PTQD [1] 4/8 21.08 17.38
TEMQ-DM (Ours) 4/8 8.68 (-12.40)  10.29 (-7.09)

Additionally, we present experiments performed using
the DPM++ solver [6] on LSUN-Churches 256 x 256 [11].
As illustrated in Tab. V, our framework consistently out-
performs existing methods in terms of performance on this


https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html

dataset with the DPM++ solver.

Table V. Quantization results for unconditional image generation
with DPM++ on LSUN-Churches 256 x 256.

LSUN-Churches 256 x 256

Methods Bits (W/A)
FID| sFID|
Full Prec. 32/32 4.12 10.55
Q-Diffusion [4] 4/8 7.80 23.24
PTQD [1] 4/8 7.45 22.74
TFMQ-DM (Ours) 4/8 5.51 (-1.94) 13.15 (-9.59)

H. Comparison of Visualization Results

Within this section, we present random samples derived
from full-precision and w4a8 quantized diffusion models
with a fixed random seed. These quantized models were
created through our TFMQ-DM or previous state-of-the-
art methods. The figures below illustrate the obtained re-
sults. As shown from Fig. III to Fig. VIII, our frame-
work yields results that closely resemble those of the full-
precision model, showcasing higher fidelity. Moreover, it
excels in finer details, producing superior outcomes in some
intricate aspects (zoom in to closely examine the relevant
images).
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(d) TFMQ-DM (w4a8)

Figure III. Random samples from w4a8 quantized and full-precision LDM-4 on CelebA-HQ 256 x 256. The resolution of each sample is
256 x 256.



(d) TFMQ-DM (WZaS)

Figure IV. Random samples from w4a8 quantized and full-precision LDM-8 on LSUN-Churches 256 x 256. The resolution of each sample
is 256 x 256.
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(c) TFM\Q—DM (w4a8)

Figure V. Random samples from w4a8 quantized and full-precision LDM-4 on LSUN-Bedrooms 256 x 256. The resolution of each sample
is 256 x 256.
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(c) TFMQ-DM (w4a8)

Figure VI. Random samples from w4a8 quantized and full-precision LDM-4 on ImageNet 256 x 256. The resolution of each sample is
256 x 256.
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(b) Q-Diffusion (w4a8)
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(c) TEMQ-DM (w4a8)

Figure VII. Random samples from w4a8 quantized and full-precision DDIM on CIFAR-10 32 x 32. The resolution of each sample is
32 x 32.

(c) TFMQ-DM (w4a8)

Figure VIII. Random samples from w4a8 quantized and full-precision Stable Diffusion. (Left) prompt: A digital illustration of the Babel
tower, detailed, trending in artstation, fantasy vivid colors. (Right) prompt: A beautiful castle beside a waterfall in the woods. The
resolution of each sample is 512 x 512.
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