Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning

Supplementary Material

A. Experimental Details

In this section, we give more details about the architecture,
training and evaluation for reference.

A.1. Visual Adapter

Here we detail how we introduce Adapter [9] into the
Transformer-based image encoder. Specifically, we insert
small learnable modules (i.e., adapters) after the multi-head
self-attention layer and the feed-forward network inside
each Transformer block. Given an input feature x € R¢, the
adapter module uses a down-projection with the parameter
matrix Wdewn ¢ R4X7T (o project the feature to a lower-
dimensional space specified by the bottleneck dimension r
(r < d), followed a nonlinear activation function o(+), and
an up-projection with the parameter matrix W"? € R"*4,
Adopting a residual connection design, the overall compu-
tation of the adapter module is defined as

Adapter(x) = X + o(x WU)WUP|

where o (+) is implemented as GELUs [8]. Keeping the orig-
inal image encoder frozen, we only optimize the parameters
of these inserted adapters during training.

A.2. Hyperparameters

Tab. 8 lists the hyperparameters that differ on each dataset
and are determined with the validation performance. For
other hyperparameters, the CLIP’s pre-trained word embed-
dings of “a photo of” are used to initialize all three prefixes.
For Adapter inserted into the image encoder, the bottleneck
dimension r is set to 64, and the dropout rate is set to 0.1. In
the cross-modal traction module, the feed-forward network
first expands the dimension of the input features to 4x its
original value, and then shrinks it back. The number of at-
tention heads h is 12, and the dimension of the single-head
attention d**' is 64. The strength parameter vector A is ini-
tialized with the scalar value 0.1. During training, we use
the Adam [17] optimizer and decay the learning rate of all
trainable parameters by 0.5 every 5 epochs.

A.3. Feasibility Calibration for Open-World Setting

Following [25, 29], we apply the post-training feasibility
calibration to filter out infeasible compositions that might
be present in the open-world evaluation. The calibration
assumes that similar objects share similar states while dis-
similar objects are unlikely to share states. Therefore, given
a candidate pair ¢ = (s, o), similarities between the objects

Hyperparameter MIT-States | UT-Zappos C-GQA
Learning rate 10~2 2.5 x 1074 [1.25 x 10=°
Batch size 64 64 64
Number of epochs 10 15 15
Attribute dropout rate 0.3 0.3 0
CMT dropout rate 0.1 0 0
Weight decay 10-° 10-5 10-°
Number of CMT layers N 3 2 2
Coefficients o€, a®, a® 1,1,1 1,1,1 1,0.1,0.1

Table 8. Hyperparameters for different datasets.

42.2 12,5 12.4

222 221 221

22, 2.0 12.0 12.
22.0 41.3 11.0[1.8
0218 40.4 1130
<216 39.5

10.7f
21.4 38.6
21.2 21.3
10731072107* 10° 10%
MIT-States

10.1f

37.7 9.5k 9.8
10731072107* 10° 10% 10731072107% 10° 10!
UT-Zappos C-GQA

Figure 7. Sensitivity analysis on loss weighting coefficients o®
and o°.

can be computed as

= max M
pols:0) = I TolO@)

where O°¢ is the object set that contains those paired with
the state s in seen compositions. And ¢(+) is an embedding
function that maps the primitive to a pre-trained embedding,
which is implemented with GloVe embeddings [31]. We
also compute similarities between the states as p;(s,0) in
the same way. Next, the feasibility score for the composi-
tion (s, 0) can be computed by combining the two similari-
ties with a mean pooling function yu:

p(s8,0) = p(po(s,0), ps(s,0))-

Finally, by only considering compositions above a
threshold 7°, infeasible compositions can be filtered out.
And the inference of Troika now becomes

&= arg max (p(eijlz)),

ci,;E€ECt9t p(s,0)>T

where the threshold 7' is calibrated based on the perfor-
mance on the validation set.

B. Hyperparameter Sensitivity Analysis

In this section, we vary some key hyperparameters to exam-
ine how sensitive the proposed Troika is to them.

Loss weighting coefficients «® and «°. In Fig. 7, after
fixing the weighting coefficient of the composition branch
«af as 1, we vary the loss coefficients on the state and ob-
ject branches, i.e., a® and a. While setting a® and a° as 1

22.4 422 12.5F 12.4
22.1 LS 40.8 12.0
218 1.8 39.4 11.8 11.§
o 2L 11.5
2 2L 11.
<215 38.0 11.0
226 366 105
) e e s .| s s e [P Y- N O SO
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
MIT-States UT-Zappos C-GQA

Figure 8. Sensitivity analysis on Adapter bottleneck dimension
.

124
22.1 L

22.1 20| 4171416 247 12475

21.8 a0k 122
o
2as 403t 1201

11.8
21.2F 211 396} 11.8r
39.1
20.9 RO sg0k 39.1; 11.6 176
1 2 3 4 1 2 3 4 1 2 3 4
MIT-States UT-Zappos C-GQA

Figure 9. Sensitivity analysis on the number of Cross-Modal
Traction module layers N.

22.2p2.022-122.0

41.5 12.5

21.7 39.0

12.0r
%) 21.2

2207

365 115+

34.0 11.0F

20.2 315

1051

19.7 29.0

I LU I O 7 L e s e S

0 0103050709 0 0103050709 0 0.10.30.50.70.9
MIT-States UT-Zappos C-GQA

Figure 10. Sensitivity analysis on initialization value of \.

can achieve the best result on MIT-States and UT-Zappos, a
smaller value as 0.1 is better on C-GQA, where learning in
a composable way deserves a higher priority in more com-
plex scenarios. Another observation is that setting ® and
a? as 10 leads to a significant drop, which shows that it is
detrimental to give the primitive branches a higher status
than the composition branch during training.

Adapter bottleneck dimension r. In Fig. 8, we vary the
bottleneck dimension r of the introduced adapters. For all
three datasets, 64 is an optimal choice for . And a higher
r may cause a performance crash on smaller datasets like
UT-Zappos due to over-fitting.

Number of CMT module layers N. In Fig. 9, a 2-layer
Cross-Modal Traction module is optimal for C-GQA, while
setting IV as 3 is better for the other two datasets. Although
not affecting its leadership over baseline methods, it is ob-
served that further deepening the module may result in a
loss of performance for Troika.

Initialization of A. In Fig. 10, we first vary the initializa-
tion value of the trainable parameter vector A, which con-
trols the strength of the cross-modal traction. On all three
datasets, initializing A with 0.1 achieves the highest AUC,
and steadily increasing the initialization value leads to a
continuous decline in performance. We attribute this phe-
nomenon to the fact that aggressive traction may destroy the
cross-modal alignment already established by pre-training.
Therefore, a larger initialization value for A increases the
difficulty of optimization. We also display the statistics of

X value | MIT-States | UT-Zappos | C-GQA

mean 0.092 0.092 0.101

max 0.113 0.106 0.107

min 0.079 0.079 0.099
Table 9. Statistics of the trained .

. X UT-Zappos C-GQA
CMTinTroka | gy HM AUC| S U HM AUC
t«—t+X-t |668 73.8 54.6 41.7 |41.0 357 294 124

t—t 64.8 719 489 36.1 |404 316 282 11.1

Table 10. Ablation on the implementation of the CMT module.

A UT-Zappos C-GQA
Vectorized Trainable| S U HM AUC| S U HM AUC
v v 66.8 73.8 54.6 41.7 |41.0 35.7 294 124

v 66.2 73.5 542 413 |39.8 332 29.1 11.5

v 65.2 73.1 529 40.1 |40.8 35.0 28.5 12.0
Table 11. Ablation on the strength parameter \.

the trained A values in Tab. 9, which remain near the initial
0.1. As a conclusion, the current initialization settings for
A are appropriate.

Prefix initialization. In Tab. 12, we report the results of
trying several combinations of initialization for prompt pre-
fixes from different branches, which confirm that Troika
might be marginally sensitive to the prefix initialization. In
our experiments, we have selected a simplest combination
as the default initialization for convenience.

C. Additional Ablation Study

In this section, we add more ablation experiments to analyze
the effects of each design in Troika.

Ablation on strength parameter A. Since an aggressive
traction may destroy the cross-modal alignment already es-
tablished by pre-training, the Cross-Modal Traction module
summarizes the features with a small weight for t, avoiding
its dominance. We first prove the necessity of A and the
residual structure in Tab. 10, where directly replacing t with
t leads to a decrease compared to the current implementa-
tion. In Tab. 11, we ablate A with two adjustments: (1)
freeze A after the initialization, and (2) change the parame-
ter vector A € R to a trainable scalar. We observe that each
of both adjustments leads to a drop in performance, which
reveals the importance of adaptively scaling the strength of
the cross-modal traction performed on each dimension.
Ablation on backbone. Tab. 13 compares Troika with
other methods when using different ViT-based CLIP back-
bones. Note that only CLIP [33] and CSP [29] are included
in the comparison, as other CLIP-based methods have not
reported the results with different backbones. We can ob-
serve that our Troika consistently outperforms the compared
methods, and a larger backbone leads to better performance.

D. Additional Comparison Results

In this section, we present a more comprehensive compari-
son of our Troika to demonstrate its superiority.

branch MIT-States | UT-Zappos C-GQA
c s HM AUC ‘ HM AUC | HM AUC
“aphoto of” “a photo of” “a photo of” 393 2211 | 546 417 | 294 124
“aphoto of” “the object is” “the object is” 39.2 224 556 409 |29.7 120
“the object is” “the object is” “the object is” 387 21.7 | 528 41.0 | 285 115
“aphoto of” “the state of the object is” “the class of the objectis” | 39.1 222 | 545 42.7 | 28.7 11.6
“aphoto of” “the state is” “the class is” 38.8 214 | 532 385|296 12.0
Table 12. Sensitivity analysis on initialization of prefixes.
MIT-States UT-Zappos C-GQA
Method Backbone | S U HM AUC| S U HM AUC| S U HM AUC
CLIP [33] ViT-B/32 | 25.1 39.1 214 75 | 96 424 100 24 | 73 221 74 12
CSP [29] ViT-B/32 | 36.4 425 28.6 124 |57.1 573 393 242 |30.1 234 194 5.7
Troika (Ours) ViT-B/32 | 39.5 42.8 30.5 13.9 | 60.5 674 473 323|363 272 244 84
CLIP [33] ViT-L/14 | 30.2 46.0 26.1 110|158 49.1 156 50 | 75 250 86 14
CSP [29] VIiT-L/14 | 46.6 499 363 194 | 642 662 46.6 33.0 | 28.8 26.8 205 6.2
Troika (Ours) ViT-L/14 | 49.0 53.0 393 221 | 66.8 73.8 54.6 41.7 | 41.0 357 294 124

Table 13. Ablation on backbone architecture of CLIP.

D.1. Efficiency Comparison with SOTA Method

One concern may arise that, compared to the existing
single-branch methods, methods following our Multi-Path
paradigm need to extract and align the multi-modal features
for each branch individually, thus requiring more number
of parameters and computation. However, we point out that
this can be avoided by carefully designing the efficient solu-
tions. For both text and vision feature extraction, the design
of Troika maintains the idea of parameter efficiency to min-
imize the number of training parameters. Moreover, for in-
ference, Troika only needs to extract the text features for all
three branches once for the whole dataset, and the decou-
pling of the image features occurs after the output projec-
tion, which does not require multiple forward computations
by the visual encoder. Therefore, when calculating the av-
erage inference time for a single sample, the increase due
to the Multi-Path paradigm is actually much lower than ex-
pected. To demonstrate this, we conduct an efficiency com-
parison with the state-of-the-art DFSP [23] method on the
UT-Zappos dataset, and the results are listed in Tab. 14. It
is observed that DFSP actually requires more trainable pa-
rameters and inference time than Troika, due to its reliance
on heavy cross-attention and self-attention blocks outside of
the CLIP backbone for cross-modal information interaction.
As a conclusion, the proposed efficient implementations on
the Multi-Path paradigm allow our approach to outperform
the state-of-the-art methods in terms of recognition accu-
racy without sacrificing storage and operational efficiency.

Methods | #Params (M) | | Inference Time (ms) |
DFSP [23] 31.81 18.56
Troika (Ours) 21.70 17.31

Table 14. Efficiency comparison between DFSP and Troika.
We report the number of trainable parameters and the average in-
ference time. Troika is superior in terms of storage and operational
efficiency.

D.2. Comparison with Existing CZSL Methods

Baselines. We compare Troika with both CLIP-based
methods [23, 29, 33, 37, 43] and existing CZSL meth-
ods[1, 14,15, 19,20, 24-28, 32] with a pre-trained ResNet-
18 [7] backbone. For CompCos [24] and Co-CGE [25], we
report the results of which version of the models according
to the experimental setup, i.e., the closed-world version for
the closed-world setting, and the open-world version for the
open-world setting.

Results. Tab. 15 reports the closed-world results and
Tab. 16 reports the open-world results. Credit to the trans-
ferred pre-trained knowledge, we find that CLIP-based
methods significantly outperform other CZSL methods in
both settings. And our proposed Troika achieves the state-
of-the-art performance in all cases.

MIT-States UT-Zappos C-GQA
Method S U HM AUC | S U HM AUC | S U HM AUC
AoP [28] 143 174 9.9 1.6 59.8 542 408 259 17.0 5.6 5.9 0.7
LE+ [26] 150 20.1 10.7 2.0 53.0 619 410 257 18.1 5.6 6.1 0.8
TMN [32] 202 20.1 13.0 2.9 587 60.0 450 293 | 23.1 6.5 75 1.1
SymNet [20] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 234 26.8 10.3 11.0 2.1
CompCos [24] 253 246 164 4.5 59.8 625 431 28.1 | 28.1 112 124 2.6
CGE [27] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.1 10.1 114 2.3
Co-CGE [25] 278 252 175 5.1 582 633 441 29.1 293 119 127 2.8
SCEN [19] 299 252 184 5.3 635 63.1 478 320 | 289 121 12.4 2.9
CVGAE [1] 285 255 182 53 650 624 498 346 | 282 119 139 2.8
CANet [36] 290 262 179 5.4 61.0 663 473 33.1 30,0 132 145 33
CAPE [15] 305 262 19.1 5.8 604 674 455 313 | 329 156 163 4.2
CLIP [33] 302 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [43] 344 476 298 135 | 521 493 346 188 | 205 268 17.1 4.4
CSP [29] 46.6 499 363 194 | 642 662 466 330 | 288 268 205 6.2
PromptCompVL [37] 485 472 353 183 | 644 640 461 322 - - - -
DFSP(i2t) [23] 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1 35.6 29.3 24.3 8.7
DFSP(BiF) [23] 471 528 377 208 | 633 692 471 335 | 365 320 262 9.9
DFSP(t2i) [23] 469 520 373 206 | 667 717 472 360 | 382 320 27.1 10.5
Troika (Ours) 49.0-+£04 53.0+02 39.3+02 22.1+0.1/66.8+1.1 73.8+0.6 54.6+05 41.7+0.7{41.0+02 35.7+03 29.4+02 12.4+0.1

Table 15. Closed-world results. For our Troika, we report the average performance on 5 random seeds with standard error.

MIT-States UT-Zappos C-GQA
Method S U HM AUC| S U HM AUC| S U HM AUC
AoP [28] 16.6 5.7 4.7 0.7 509 342 294 13.7 - - - -
LE+ [26] 14.2 2.5 2.7 0.3 604 365 305 16.3 19.2 0.7 1.0 0.08
TMN [32] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet [20] 21.4 7.0 5.8 0.8 533 446 345 18.5 267 22 33 0.43
CompCos [24] 25.4 10.0 8.9 1.6 | 593 468 369 213 28.4 1.8 2.8 0.39
CGE [27] 29.6 4.0 49 0.7 58.8 46.5 38,0 215 28.3 1.3 2.2 0.30
Co-CGE [25] 26.4 10.4 10.1 20 | 60.1 443 38.1 21.3 28.7 1.6 2.6 0.37
KG-SP [14] 28.4 7.5 74 1.3 61.8 52.1 423 265 31,5 29 4.7 0.78
CVGAE [1] 27.3 9.9 10.0 1.8 58.6 484 4177 222 | 266 29 6.4 0.7
CLIP [33] 30.1 14.3 128 3.0 157 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CoOp [43] 34.6 9.3 12.3 2.8 52.1 31.5 289 13.2 21.0 46 5.5 0.70
CSP [29] 46.3 15.7 174 57 64.1 44.1 389 227 287 52 6.9 1.20
PromptCompVL [37] 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 - - - -
DFSP(i2t) [23] 47.2 18.2 19.1 6.7 643 538 412 264 356 6.5 9.0 1.95
DFSP(BiF) [23] 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6 36.4 7.6 10.6 2.39
DFSP(2i) [23] 47.5 18.5 19.3 6.8 668 600 440 303 383 72 104 240
Troika (Ours) 48.8+04 18.7+0.1 20.1+0.1 7.2+0.1{66.4+1.0 61.2+1.0 47.8+13 33.0+10(40.8+02 7.9+02 10.9+03 2.70+0.1

Table 16. Open-world results. For our Troika, we report the average performance on 5 random seeds with standard error.

