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Supplementary Material

A. Experimental Details

In this section, we give more details about the architecture,
training and evaluation for reference.

A.1. Visual Adapter

Here we detail how we introduce Adapter [9] into the
Transformer-based image encoder. Specifically, we insert
small learnable modules (i.e., adapters) after the multi-head
self-attention layer and the feed-forward network inside
each Transformer block. Given an input feature x ∈ Rd, the
adapter module uses a down-projection with the parameter
matrix Wdown ∈ Rd×r to project the feature to a lower-
dimensional space specified by the bottleneck dimension r
(r ≪ d), followed a nonlinear activation function σ(·), and
an up-projection with the parameter matrix Wup ∈ Rr×d.
Adopting a residual connection design, the overall compu-
tation of the adapter module is defined as

Adapter(x) = x+ σ(xWdown)Wup,

where σ(·) is implemented as GELUs [8]. Keeping the orig-
inal image encoder frozen, we only optimize the parameters
of these inserted adapters during training.

A.2. Hyperparameters

Tab. 8 lists the hyperparameters that differ on each dataset
and are determined with the validation performance. For
other hyperparameters, the CLIP’s pre-trained word embed-
dings of “a photo of” are used to initialize all three prefixes.
For Adapter inserted into the image encoder, the bottleneck
dimension r is set to 64, and the dropout rate is set to 0.1. In
the cross-modal traction module, the feed-forward network
first expands the dimension of the input features to 4× its
original value, and then shrinks it back. The number of at-
tention heads h is 12, and the dimension of the single-head
attention dattn is 64. The strength parameter vector λ is ini-
tialized with the scalar value 0.1. During training, we use
the Adam [17] optimizer and decay the learning rate of all
trainable parameters by 0.5 every 5 epochs.

A.3. Feasibility Calibration for Open-World Setting

Following [25, 29], we apply the post-training feasibility
calibration to filter out infeasible compositions that might
be present in the open-world evaluation. The calibration
assumes that similar objects share similar states while dis-
similar objects are unlikely to share states. Therefore, given
a candidate pair c = ⟨s, o⟩, similarities between the objects

Hyperparameter MIT-States UT-Zappos C-GQA
Learning rate 10−4 2.5× 10−4 1.25× 10−5

Batch size 64 64 64
Number of epochs 10 15 15
Attribute dropout rate 0.3 0.3 0
CMT dropout rate 0.1 0 0
Weight decay 10−5 10−5 10−5

Number of CMT layers N 3 2 2
Coefficients αc, αs, αo 1, 1, 1 1, 1, 1 1, 0.1, 0.1

Table 8. Hyperparameters for different datasets.
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Figure 7. Sensitivity analysis on loss weighting coefficients αs

and αo.

can be computed as

ρo(s, o) = max
ô∈Ose

ϕ(o) · ϕ(ô)
∥ϕ(o)∥∥ϕ(ô)∥ ,

where Ose is the object set that contains those paired with
the state s in seen compositions. And ϕ(·) is an embedding
function that maps the primitive to a pre-trained embedding,
which is implemented with GloVe embeddings [31]. We
also compute similarities between the states as ρs(s, o) in
the same way. Next, the feasibility score for the composi-
tion (s, o) can be computed by combining the two similari-
ties with a mean pooling function µ:

ρ(s, o) = µ(ρo(s, o), ρs(s, o)).

Finally, by only considering compositions above a
threshold T , infeasible compositions can be filtered out.
And the inference of Troika now becomes

ĉ = argmax
ci,j∈Ctgt,ρ(s,o)>T

(p̃(ci,j |x)) ,

where the threshold T is calibrated based on the perfor-
mance on the validation set.

B. Hyperparameter Sensitivity Analysis
In this section, we vary some key hyperparameters to exam-
ine how sensitive the proposed Troika is to them.
Loss weighting coefficients αs and αo. In Fig. 7, after
fixing the weighting coefficient of the composition branch
αc as 1, we vary the loss coefficients on the state and ob-
ject branches, i.e., αs and αo. While setting αs and αo as 1
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Figure 8. Sensitivity analysis on Adapter bottleneck dimension
r.
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Figure 9. Sensitivity analysis on the number of Cross-Modal
Traction module layers N .
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Figure 10. Sensitivity analysis on initialization value of λ.

can achieve the best result on MIT-States and UT-Zappos, a
smaller value as 0.1 is better on C-GQA, where learning in
a composable way deserves a higher priority in more com-
plex scenarios. Another observation is that setting αs and
αo as 10 leads to a significant drop, which shows that it is
detrimental to give the primitive branches a higher status
than the composition branch during training.
Adapter bottleneck dimension r. In Fig. 8, we vary the
bottleneck dimension r of the introduced adapters. For all
three datasets, 64 is an optimal choice for r. And a higher
r may cause a performance crash on smaller datasets like
UT-Zappos due to over-fitting.
Number of CMT module layers N . In Fig. 9, a 2-layer
Cross-Modal Traction module is optimal for C-GQA, while
setting N as 3 is better for the other two datasets. Although
not affecting its leadership over baseline methods, it is ob-
served that further deepening the module may result in a
loss of performance for Troika.
Initialization of λ. In Fig. 10, we first vary the initializa-
tion value of the trainable parameter vector λ, which con-
trols the strength of the cross-modal traction. On all three
datasets, initializing λ with 0.1 achieves the highest AUC,
and steadily increasing the initialization value leads to a
continuous decline in performance. We attribute this phe-
nomenon to the fact that aggressive traction may destroy the
cross-modal alignment already established by pre-training.
Therefore, a larger initialization value for λ increases the
difficulty of optimization. We also display the statistics of

λ value MIT-States UT-Zappos C-GQA
mean 0.092 0.092 0.101
max 0.113 0.106 0.107
min 0.079 0.079 0.099
Table 9. Statistics of the trained λ.

CMT in Troika
UT-Zappos C-GQA

S U HM AUC S U HM AUC
t← t+ λ · t̃ 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4

t← t̃ 64.8 71.9 48.9 36.1 40.4 31.6 28.2 11.1

Table 10. Ablation on the implementation of the CMT module.

λ UT-Zappos C-GQA
Vectorized Trainable S U HM AUC S U HM AUC

✓ ✓ 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4
✓ 66.2 73.5 54.2 41.3 39.8 33.2 29.1 11.5

✓ 65.2 73.1 52.9 40.1 40.8 35.0 28.5 12.0

Table 11. Ablation on the strength parameter λ.

the trained λ values in Tab. 9, which remain near the initial
0.1. As a conclusion, the current initialization settings for
λ are appropriate.
Prefix initialization. In Tab. 12, we report the results of
trying several combinations of initialization for prompt pre-
fixes from different branches, which confirm that Troika
might be marginally sensitive to the prefix initialization. In
our experiments, we have selected a simplest combination
as the default initialization for convenience.

C. Additional Ablation Study
In this section, we add more ablation experiments to analyze
the effects of each design in Troika.
Ablation on strength parameter λ. Since an aggressive
traction may destroy the cross-modal alignment already es-
tablished by pre-training, the Cross-Modal Traction module
summarizes the features with a small weight for t̃, avoiding
its dominance. We first prove the necessity of λ and the
residual structure in Tab. 10, where directly replacing t with
t̃ leads to a decrease compared to the current implementa-
tion. In Tab. 11, we ablate λ with two adjustments: (1)
freeze λ after the initialization, and (2) change the parame-
ter vector λ ∈ Rd to a trainable scalar. We observe that each
of both adjustments leads to a drop in performance, which
reveals the importance of adaptively scaling the strength of
the cross-modal traction performed on each dimension.
Ablation on backbone. Tab. 13 compares Troika with
other methods when using different ViT-based CLIP back-
bones. Note that only CLIP [33] and CSP [29] are included
in the comparison, as other CLIP-based methods have not
reported the results with different backbones. We can ob-
serve that our Troika consistently outperforms the compared
methods, and a larger backbone leads to better performance.

D. Additional Comparison Results
In this section, we present a more comprehensive compari-
son of our Troika to demonstrate its superiority.



branch MIT-States UT-Zappos C-GQA
c s o HM AUC HM AUC HM AUC

“a photo of” “a photo of” “a photo of” 39.3 22.1 54.6 41.7 29.4 12.4
“a photo of” “the object is” “the object is” 39.2 22.4 55.6 40.9 29.7 12.0
“the object is” “the object is” “the object is” 38.7 21.7 52.8 41.0 28.5 11.5
“a photo of” “the state of the object is” “the class of the object is” 39.1 22.2 54.5 42.7 28.7 11.6
“a photo of” “the state is” “the class is” 38.8 21.4 53.2 38.5 29.6 12.0

Table 12. Sensitivity analysis on initialization of prefixes.

MIT-States UT-Zappos C-GQA
Method Backbone S U HM AUC S U HM AUC S U HM AUC
CLIP [33] ViT-B/32 25.1 39.1 21.4 7.5 9.6 42.4 10.0 2.4 7.3 22.1 7.4 1.2
CSP [29] ViT-B/32 36.4 42.5 28.6 12.4 57.1 57.3 39.3 24.2 30.1 23.4 19.4 5.7
Troika (Ours) ViT-B/32 39.5 42.8 30.5 13.9 60.5 67.4 47.3 32.3 36.3 27.2 24.4 8.4
CLIP [33] ViT-L/14 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CSP [29] ViT-L/14 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
Troika (Ours) ViT-L/14 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7 41.0 35.7 29.4 12.4

Table 13. Ablation on backbone architecture of CLIP.

D.1. Efficiency Comparison with SOTA Method

One concern may arise that, compared to the existing
single-branch methods, methods following our Multi-Path
paradigm need to extract and align the multi-modal features
for each branch individually, thus requiring more number
of parameters and computation. However, we point out that
this can be avoided by carefully designing the efficient solu-
tions. For both text and vision feature extraction, the design
of Troika maintains the idea of parameter efficiency to min-
imize the number of training parameters. Moreover, for in-
ference, Troika only needs to extract the text features for all
three branches once for the whole dataset, and the decou-
pling of the image features occurs after the output projec-
tion, which does not require multiple forward computations
by the visual encoder. Therefore, when calculating the av-
erage inference time for a single sample, the increase due
to the Multi-Path paradigm is actually much lower than ex-
pected. To demonstrate this, we conduct an efficiency com-
parison with the state-of-the-art DFSP [23] method on the
UT-Zappos dataset, and the results are listed in Tab. 14. It
is observed that DFSP actually requires more trainable pa-
rameters and inference time than Troika, due to its reliance
on heavy cross-attention and self-attention blocks outside of
the CLIP backbone for cross-modal information interaction.
As a conclusion, the proposed efficient implementations on
the Multi-Path paradigm allow our approach to outperform
the state-of-the-art methods in terms of recognition accu-
racy without sacrificing storage and operational efficiency.

Methods #Params (M) ↓ Inference Time (ms) ↓
DFSP [23] 31.81 18.56
Troika (Ours) 21.70 17.31

Table 14. Efficiency comparison between DFSP and Troika.
We report the number of trainable parameters and the average in-
ference time. Troika is superior in terms of storage and operational
efficiency.

D.2. Comparison with Existing CZSL Methods

Baselines. We compare Troika with both CLIP-based
methods [23, 29, 33, 37, 43] and existing CZSL meth-
ods [1, 14, 15, 19, 20, 24–28, 32] with a pre-trained ResNet-
18 [7] backbone. For CompCos [24] and Co-CGE [25], we
report the results of which version of the models according
to the experimental setup, i.e., the closed-world version for
the closed-world setting, and the open-world version for the
open-world setting.

Results. Tab. 15 reports the closed-world results and
Tab. 16 reports the open-world results. Credit to the trans-
ferred pre-trained knowledge, we find that CLIP-based
methods significantly outperform other CZSL methods in
both settings. And our proposed Troika achieves the state-
of-the-art performance in all cases.



Method
MIT-States UT-Zappos C-GQA

S U HM AUC S U HM AUC S U HM AUC
AoP [28] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [26] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN [32] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet [20] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
CompCos [24] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 11.2 12.4 2.6
CGE [27] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.1 10.1 11.4 2.3
Co-CGE [25] 27.8 25.2 17.5 5.1 58.2 63.3 44.1 29.1 29.3 11.9 12.7 2.8
SCEN [19] 29.9 25.2 18.4 5.3 63.5 63.1 47.8 32.0 28.9 12.1 12.4 2.9
CVGAE [1] 28.5 25.5 18.2 5.3 65.0 62.4 49.8 34.6 28.2 11.9 13.9 2.8
CANet [36] 29.0 26.2 17.9 5.4 61.0 66.3 47.3 33.1 30.0 13.2 14.5 3.3
CAPE [15] 30.5 26.2 19.1 5.8 60.4 67.4 45.5 31.3 32.9 15.6 16.3 4.2
CLIP [33] 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CoOp [43] 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
CSP [29] 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
PromptCompVL [37] 48.5 47.2 35.3 18.3 64.4 64.0 46.1 32.2 - - - -
DFSP(i2t) [23] 47.4 52.4 37.2 20.7 64.2 66.4 45.1 32.1 35.6 29.3 24.3 8.7
DFSP(BiF) [23] 47.1 52.8 37.7 20.8 63.3 69.2 47.1 33.5 36.5 32.0 26.2 9.9
DFSP(t2i) [23] 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 38.2 32.0 27.1 10.5
Troika (Ours) 49.0±0.4 53.0±0.2 39.3±0.2 22.1±0.1 66.8±1.1 73.8±0.6 54.6±0.5 41.7±0.7 41.0±0.2 35.7±0.3 29.4±0.2 12.4±0.1

Table 15. Closed-world results. For our Troika, we report the average performance on 5 random seeds with standard error.

Method
MIT-States UT-Zappos C-GQA

S U HM AUC S U HM AUC S U HM AUC
AoP [28] 16.6 5.7 4.7 0.7 50.9 34.2 29.4 13.7 - - - -
LE+ [26] 14.2 2.5 2.7 0.3 60.4 36.5 30.5 16.3 19.2 0.7 1.0 0.08
TMN [32] 12.6 0.9 1.2 0.1 55.9 18.1 21.7 8.4 - - - -
SymNet [20] 21.4 7.0 5.8 0.8 53.3 44.6 34.5 18.5 26.7 2.2 3.3 0.43
CompCos [24] 25.4 10.0 8.9 1.6 59.3 46.8 36.9 21.3 28.4 1.8 2.8 0.39
CGE [27] 29.6 4.0 4.9 0.7 58.8 46.5 38.0 21.5 28.3 1.3 2.2 0.30
Co-CGE [25] 26.4 10.4 10.1 2.0 60.1 44.3 38.1 21.3 28.7 1.6 2.6 0.37
KG-SP [14] 28.4 7.5 7.4 1.3 61.8 52.1 42.3 26.5 31.5 2.9 4.7 0.78
CVGAE [1] 27.3 9.9 10.0 1.8 58.6 48.4 41.7 22.2 26.6 2.9 6.4 0.7
CLIP [33] 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CoOp [43] 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.70
CSP [29] 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20
PromptCompVL [37] 48.5 16.0 17.7 6.1 64.6 44.0 37.1 21.6 - - - -
DFSP(i2t) [23] 47.2 18.2 19.1 6.7 64.3 53.8 41.2 26.4 35.6 6.5 9.0 1.95
DFSP(BiF) [23] 47.1 18.1 19.2 6.7 63.5 57.2 42.7 27.6 36.4 7.6 10.6 2.39
DFSP(t2i) [23] 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 38.3 7.2 10.4 2.40
Troika (Ours) 48.8±0.4 18.7±0.1 20.1±0.1 7.2±0.1 66.4±1.0 61.2±1.0 47.8±1.3 33.0±1.0 40.8±0.2 7.9±0.2 10.9±0.3 2.70±0.1

Table 16. Open-world results. For our Troika, we report the average performance on 5 random seeds with standard error.


