A. Limitations and Discussion

Due to computational resource limitations, we are not able
to process and train our model on the full Objaverse dataset.
Currently, the meshes from Objaverse we use only con-
sist of 5% of Objaverse and 0.4% of Objaverse-XL objects.
Based on the promising scaling properties of recent foun-
dation models [3, 4, 10], we believe it will be valuable to
explore the scaling properties of method.

Another limitation of our work is that we have not con-
sidered the modeling of object texture. Predicting textures
of unseen surfaces is highly ill-posed and can greatly ben-
efit from a strong 2D prior. Given the recent success of 2D
diffusion models [8] and their application in optimization-
based 3D generation methods [1, 2, 5-7, 9], we think it will
be promising to initialize or regularize these methods with
our shape prior, potentially boosting both the optimization
efficiency and generation quality.

B. Additional Comparison

Additional qualitative results. We show additional qual-
itative results on OmniObject3D, Ocrtoc3D and Pix3D
in Fig. 1, Fig. 2 and Fig. 3, respectively. Comparing with
prior arts, the reconstruction of ZeroShape better captures
the global shape structure and visible geometric details.
Additional quantitative comparison. We additionally
compare ZeroShape to the optimization-based approach,
SDS w/ Zerol23 !.  Due to the low efficiency of
optimization-based approaches, we randomly sampled 30
objects on OmniObject3D for evaluation. In this evalua-
tion, ZeroShape achieves an FS@2 of 0.4630, significantly
higher than that of Zero123+SDS, 0.3826.

Additional ablation. We further ablate the performance by
training MCC with our curated data. We improve the coor-
dinate system in MCC to be view-centric for stable conver-
gence. Tab. | shows that training MCC on our curated data
(MCC-Zero) significantly improves its performance, veri-
fying our data contribution. On the other hand, the perfor-
mance gap between MCC-Zero and ZeroShape, and our 5x
higher inference speed, demonstrate the efficacy of our de-
sign choices.

Method MCC-CO3D MCC-Zero
FS@21 0.3215 0.4283

ZeroShape
0.4927

Table 1. Additional ablation on OmniObject3D.

C. Inference on Al-generated Images

We present additional results of ZeroShape using images
generated with DALL-E 3. To test the out-of-domain gen-
eralization ability, we generate images of imaginary objects

'https : / / github . com / threestudio - project /
threestudio#zero-1-to-3-

as the input to our model (see Fig. 4). Despite the domain
gap to realistic or rendered images, ZeroShape can faith-
fully recover the global shape structure and accurately fol-
low the local geometry cues from the input image. These
results also demonstrate the potential of using ZeroShape in
a text-based 3D generation workflow.

D. Data Curation Details

In this section we describe our data generation procedure
for training and for rendering the object scans from Om-
niObject3D to generate one of our benchmark test sets.

D.1. Synthetic Training Dataset Generation

Image Rendering. For an arbitrary 3D mesh asset, our
Blender-based rendering pipeline first loads it into a scene
and normalizes it to fit inside a unit cube. Our scene con-
sists of a large rectangular bowl with a flat bottom, a com-
mon scene setup that 3D artists use for rendering to allow
for realistic shading, and 4 point light sources and one area
light source. We randomly place cameras around the object
with 30mm to 70mm focal length for a 35mm sensor size
equivalent. We randomly vary the distance, elevation (from
5 to 65 degrees), the LookAt point of the camera and gener-
ate images of 600 x 600 resolution (see Fig. 5). This vari-
ation in object/camera geometry allows capturing the vari-
ability of projective geometry in real world scenarios, com-
ing from different capture devices and camera poses. This
is in contrast with prior work that uses fixed intrinsics, fixed
distance, and LookAt pointed at the center of the object.

In addition to RGB images, we extract segmentation

masks, depth maps, intrinsics, extrinsics and object pose.
We center crop the objects, mask out the background, resize
images to 224 x 224 and process the additional annotations
to account for the crop, segmentation and resize.
Ground Truth Occupancy Extraction. To obtain ground
truth occupancy, we first extract watertight meshes using the
code from occupancy networks 2, and then extract SDF for
323 query points per mesh following DISN °. The SDF is
converted to occupancy during training.

D.2. Generating the OmniObject3D Testing Set

The original videos released by the OmniObject3D dataset
have noisy foreground masks and are mostly taken indoor
on a tabletop. To improve the lighting variability and ensure
accurate segmentations, we follow the rendering procedure
described in the previous section to generate testing data.
Different from our training set generation, we use HDRI
environment maps to generate scene lighting, which results
in high lighting quality and diversity (see Fig. 6).

’https://github.com/autonomousvision/occupancy_
networks
3https://qithub.com/lauqhtervv/DISN
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Figure 1. Additional qualitative results and comparison on OmniObject3D.
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Figure 3. Qualitative results and comparison on Pix3D.
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Figure 4. Qualitative results on images generated with DALL-E 3. These results demonstrate the zero-shot generalization ability of
ZeroShape to complex novel images.
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Figure 5. Synthetic Training Data Generation. We render training images with varying lighting, camera intrinsics and extrinsics. The
images are center-cropped, foreground-segmented and resized before being used as training input.
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Figure 6. OmniObject3D Testing Data Generation. For OmniObject3D, we generate realistic testing images with varying lighting,
camera intrinsics and extrinsics. To increase rendering realism and diversity, we use diverse HDRI environment maps for scene lighting.
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