
An Edit Friendly DDPM Noise Space: Inversion and Manipulations
Supplementary Material

A. Shifting the latent code
As described in Sec. 3, we can shift an input image by shifting its extracted latent code. This requires inserting new
columns/rows at the boundary of the noise maps. To guarantee that the inserted columns/rows are drawn from the same
distribution as the rest of the noise map, we simply copy a contiguous chunk of columns/rows from a different part of the
noise map. In all our experiments, we copied into the boundary the columns/rows indexed {50, . . . , 50 + d− 1} for a shift
of d pixels. We found this strategy to work better than randomly drawing the missing columns/rows from a white normal
distribution having the same mean and variance as the rest of the noise map. Figure S1 depicts the MSE over the valid pixels
that is incurred when shifting the noise maps. This analysis was done using 25 model-generated images. As can be seen,
shifting our edit-friendly code results in minor degradation while shifting the native latent code leads to a complete loss of the
image structure.
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Figure S1. Shifting the latent code. We plot the MSE over the valid pixels after shifting the latent code and generating the image. The
colored regions represent one standard error of the mean (SEM) in each direction.
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B. The effect of the numerical error
In Algorithm 1 we add a correction step for avoiding numerical drifting. This step assists in achieving perfect reconstruction.
Note that in order to reconstruct the input image, the hyper-parameters used to extract the noise maps should be identical
to the ones used for sampling. Specifically, the prompt, Tskip, and strength parameters should be the same in the function
µt(xt) used for the inversion (Eq. 5) and in the function µt(xt) used during sampling (Eq. 3). We note that the effect of the
numerical drifting is noticeable only when using a large strength parameter (see second and third column in Fig. S2). By
default, when performing text-based editing, we do not use extreme values for the strength parameter, and therefore in such
cases this correction is not needed (rightmost column in Fig. S2).

We calculate the PSNR between the images with and without the correction for the example that appears in Fig. S2. In
the reconstruction case, using strength = 30, the PSNR can drop to below 17dB. As noted, this correction is not needed for
editing, where the PSNR between the edited images with and without the correction is 67.4dB.

input image
An image of a horse in the mud (reconstruction)An image of a horse in the mud An image of a zebra in the snow
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Figure S2. Error correction effect. Below the images, we specify the strength parameters used for the inversion (first number within the
parentheses) and the sampling (second number within the parentheses). Above the images, we specify the prompt used. Above the leftmost
column is psrc, while above the other columns is ptar. The parameter Tskip is set to 36, as in our experiments in the main text. The second and
third columns show reconstructions. As can be seen, with a large strength parameter, the reconstruction is not perfect without the correction
(e.g. the head and the leg of the horse). However, this numerical drifting does not influence the editing quality (rightmost column).



C. CycleDiffusion

As mentioned in Sec. 3.2, CycleDiffusion [6] extracts a sequence of noise maps {xT , zT , . . . , z1} for the DDPM scheme.
However, in contrast to our method, their noise maps have statistical properties that resemble those of regular sampling.
This is illustrated in Fig. S3, which depicts the per-pixel standard deviations of {zt} and the correlation between zt and zt−1

for CycleDiffusion, for regular sampling, and for our approach. These statistics were calculated over 10 images using an
unconditional diffusion model trained on Imagenet, with η = 1.0, strength = 3 and Tskip = 30 as hyper parameters. As can be
seen, the CycleDiffusion curves are almost identical to those of regular sampling, and are different from ours.
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Figure S3. CycleDiffusion noise statistics. Here we show the per-pixel standard deviations of {zt} and the per-pixel correlation between
them for mssodel-generated images.

The implication of this is that similarly to the native latent space, simple manipulations on CycleDiffusion’s noise maps
cannot be used to obtain artifact-free effects in pixel space. This is illustrated in Fig. S4 in the context of horizontal flip and
horizontal shift by 30 pixels to the right. As opposed to Cycle diffusion, applying those transformations on our latent code,
leads to the desired effects, while better preserving structure.

This behavior also affects the text based editing capabilities of CycleDiffusion. In particular, the CLIP similarity and
LPIPS distance achieved by CycleDiffusion on the modified ImageNet-R-TI2I dataset are plotted in Fig. 10. As can be seen,
when tuned to achieve a high CLIP-similarity (i.e. to better conform with the text), CycleDiffusion’s LPIPS loss increases
significantly, indicating that the output images become less similar to the input images. For the same level of CLIP similarity,
our approach achieves a substantially lower LPIPS distance.
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Figure S4. Flip and shift with CycleDiffusion and with our inversion.



D. The effect of skip and strength parameters
Recall from Sec. 4 that in order to perform text-guided image editing using our inversion, we start by extracting the latent
noise maps while injecting the source text into the model, and then generate an image by fixing the noise maps and injecting a
target text prompt. Two important parameters in this process are Tskip, which controls the timestep (T − Tskip) from which we
start the generation process, and the strength parameter of the classifier-free scale [2]. Figure S5 shows the effects of these
parameters. When Tskip is large, we start the process with a less noisy image and thus the output image remains close to the
input image. On the other hand, the strength parameter controls the compliance of the output image with the target prompt.
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A bear doll with a blue knitted sweater

Figure S5. The effects of the skip and the strength parameters.



E. Integrating to P2P
As described in sec. 4, our inversion method can be integrated with existing editing methods that rely on DDIM inversion. In
addition to combining our method with Zero-Shot I2I, we assess the integration with Prompt-to-Prompt (P2P) [1]. In that case,
we decrease the hyper-parameter controlling the cross-attention from 0.8 to 0.6 (as our latent space already strongly encodes
structure). We note that P2P has different modes for different tasks (swap word, prompt refinement), and we chose its best
mode for each image-prompt pair. Figure2 S6 and S7 show that P2P does not preserve structure well. Yet, P2P does produce
appealing results when used with our inversion.



Input
Time [sec]

Our inv.
[36]

P2P
[40]

P2P+Our
[48]

A bear doll with a blue knitted sweater → 
A bear doll with a blue knitted sweater and a hat

An origami of a hummingbird → A sculpture of a hummingbird

A photo of a horse in the mud → A photo of a zebra in the snow

A sculpture of a panda→ A sketch of a panda

A photo of a cat sitting on a car → A photo of a smiling dog sitting on a car

A sculpture of a pizza → An image of a balloon

Figure S6. Comparison to P2P, with and without our inversion.



Input
Time [sec]

Our inv.
[36]

P2P
[40]

P2P+Our
[48]

A scene of a valley  → A scene of a valley with waterfall

A photo of an old church → A photo of an old church with a rainbow

A cartoon of a cat→ An image of a bear

A photo of spiderman → A photo of a golden robot

A toy of a jeep → A cartoon of a jeep

A toy of a husky → A sculpture of a husky

Figure S7. Additional comparisons to P2P, with and without our inversion.



F. Additional details on experiments and further numerical evaluation

For all our text-based editing experiments, we used Stable Diffusion as our pre-trained text-to-image model. We specifically
used the StableDiffusion-v-1-4 checkpoint. We ran all experiments on an RTX A6000 GPU. We now provide additional details
about the evaluations reported in the main text. All datasets and prompts will be published.

In addition to measuring CLIP-based scores, LPIPS scores, and running time, we also measure the diversity among
generated outputs (higher is better). Specifically, for each image and source text psrc, we generate 8 outputs with target text ptar
and calculate the average LPIPS distance over all ( 82 ) pairs.

F.1. Experiments on the modified ImageNet-R-TI2I

Our modified ImageNet-R-TI2I dataset contains 44 images: 30 taken from PnP [5], and 14 from the Internet and from the
code bases of other existing text-based editing methods. We verified that there is a reasonable source and target prompt for
each image we added. For P2P [1] (with and without our inversion), we used the first 30 images with the “replace” option,
since they were created with rendering and class changes. That is, the text prompts were of the form “a ≪rendering≫ of a
≪class≫” (e.g. “a sketch of a cat” to “a sculpture of a cat”). The last 14 images include prompts with additional tokens and
different prompt lengths (e.g. changing “A photo of an old church” to “A photo of an old church with a rainbow”). Therefore
for those images we used the “refine” option in P2P. We configured all methods to use 100 forward and backward steps, except
for PnP whose supplied code does not work when changing this parameter.

Table S1 summarizes the hyper-parameters we used for all methods. These apply to both the numerical evaluations and
to the visual results shown in the figures. For our inversion, for P2P with our inversion, and for CycleDiffusion we arrived
at those parameters by experimenting with various sets of parameters and choosing the configuration that led to the best
CLIP loss under the constraint that the LPIPS distance does not exceed 0.3. For DDIM inversion and for P2P (who did not
illustrate their method on real images), such a requirement could not be satisfied. Therefore for those methods we chose the
configuration that led to the best CLIP loss under the constraint that the LPIPS distance does not exceed 0.62. We show results
over DDIM inversion with 100 and 50 number of diffusion steps. For DDIM inversion mid-way we use the inversion until a
specific timestep. For PnP, null-text inversion, and EDICT we used the default parameters supplied by the authors.

Method
#inv. #edit

strength Tskip τx/τasteps steps

DDIM inv. (T = 100) 100 100 9 0 –
DDIM inv. (T = 50) 50 50 9 0 –

P2P 100 100 9 0 80/40
P2P + Our inv. 100 100 9 12 60/20

PnP 1000 50 10 0 40/25
EDICT 50 50 3 10 —

null-text inversion 50 50 7.5 0 80/40
CycleDiffusion (η = 0.1) 100 100 3 30 –
CycleDiffusion (η = 1.0) 100 100 3 30 –

Our inv. 100 100 15 36 –

Table S1. Hyper-parameters used in experiments on the modified ImageNet-R-TI2I dataset. The parameter ‘strength’ refers to the
classifier-free scale of the generation process. As for the strength used in the inversion stage, we set it to 3.5 for all methods except for PnP
and CycleDiffusion which uses 1. The timestep at which we start the generation is T − Tskip and, in case of injecting attentions, we also
report the timesteps determine until which step (starting from zero) the cross- and self-attentions are injected, τx and τa respectively.

Table S2 and Figure S8 summarizes the comparisons of all methods reported in the paper with the hyper-parameters from
Tab S1. The results show that our inversion achieves a good balance between LPIPS and CLIP, while requiring short edit times.
Integrating our inversion into P2P improves their performance in both metrics. Our method, CycleDiffusion, and null-text
inversion support diversity among generated outputs.



Method CLIP sim.↑ LPIPS↓ Diversity↑ Time↓

DDIM inv. (T = 100) 0.31 0.62 0.00 39
DDIM inv. (T = 50) 0.31 0.62 0.00 39

P2P 0.30 0.61 0.00 40
P2P+Our 0.31 0.25 0.11 48

PnP 0.31 0.36 0.00 206
EDICT 0.29 0.27 0.00 520

null-text inversion 0.29 0.35 0.08 160
CycleDiffusion,η=0.1 0.30 0.27 0.21 36
CycleDiffusion,η=1.0 0.30 0.26 0.306 36

Our inv. 0.32 0.29 0.18 36

Table S2. Evaluation on modified ImageNet-R-TI2I dataset.
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Figure S8. Fidelity to source image vs. compliance with target text. We show a comparison of all methods.



F.2. Experiments on the modified zero-shot I2IT dataset

The second dataset we used is the modified Zero-Shot I2IT dataset, which contains 4 categories (cat, dog, horse, zebra). Ten
images from each category were taken from Parmar et al. [4], and we added 5 more images from the Internet to each category.
Zero-Shot I2I [4] does not use source-target pair prompts, but rather pre-defined source-target classes (e.g. cat↔dog). For
their optimized DDIM-inversion part, they use a source prompt automatically generated with BLIP [3]. When combining
our inversion with their generative method, we use Tskip = 0 and an empty source prompt. Table S3 summarizes the
hyper-parameters used in every method.

Method
#inv. #edit

strength Tskip λxasteps steps

Zero-Shot 50 50 7.5 0 0.1
Zero-Shot+Our 50 50 7.5 0 0.03

Table S3. Hyper-parameters used in experiments on the modified Zero-Shot I2IT dataset. In this method, cross-attention guidance
weight is the parameter used to control the consistency in the cross-attention maps, denoted here as λxa. We set the strength (classifier-free
scale) in the inversion part to be 1 and 3.5 for “Zero-shot” and “Zero-shot+Our” respectively.

Tab S4 summarizes the comparison to the Zero-shot method. The results show that integrating our inversion improves
the similarity to the input image while keeping the CLIP accuracy high. We also exhibit non-negligible diversity among the
generated outputs

Method CLIP Acc.↑ LPIPS↓ Diversity↑ Time
Zero-Shot 0.88 0.35 0.07 45

Zero-Shot+Our 0.88 0.27 0.16 46

Table S4. Evaluation on the modified Zero-Shot I2IT dataset.



G. Additional results
Due to the stochastic nature of our method, we can generate diverse outputs, a feature that is not naturally available with
methods relying on the DDIM inversion. Figures S9 and S10 show several diverse text-based editing results. Figures S11 and
S12 provide further qualitative comparisons between all methods tested on the ImageNet-R-TI2I dataset.

A painting of a goldfish→ A video-game of a shark

A photo of a car on the side of the street→ A photo of a truck on the side of the street

A photo of a couple dancing→ A cartoon of a couple dancing

A photo of an old church→ A photo of an old church with a rainbow

A sketch of a cat→ A sculpture of a cat

Input Generated images

Figure S9. Diverse text-based editing with our method. We apply our inversion five times with the same source and target prompts (shown
beneath each example). Note how the variability between the results is not negligible, while all of them conform to the structure of the input
image and comply with the target text prompt. Notice e.g. the variability in the sculpture cat’s eyes and mouth, and how the rainbow appears
in different locations and angles.



A cartoon on a castle→ A sculpture of a castle

A cartoon on a castle→ An embroidery of a temple

A cartoon of a cat→ An origami of a dog

A sculpture of a panda→ A sketch of a panda

A photo of a horse in the mud → A photo of a zebra in the snow

A cat is sitting next to a mirror→ A silver cat sculpture sitting next to a mirror

Input Generated images

Figure S10. Additional results for diverse text-based editing with our method. Notice that each edited result is slightly different. For
example, the eyes and nose of the origami dog change between samples, and so do the zebra’s stripes.



A cartoon of a cat→ An image of a bear

A cat sitting next to a mirror → watercolor painting of a cat sitting next to a mirror

A photo of spiderman → A photo of a golden robot

A toy of a jeep → A cartoon of a jeep

A toy of a husky → A sculpture of a husky

Input
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Our inv.
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DDIM inv. 
[39]

PnP
[206]

CycleDiffusion 
[36]

EDICT
[520]

null-text inv.
[160]

Figure S11. Qualitative comparisons between all methods.



A photo of an old church → A photo of a wooden house

An origami of a hummingbird → A sketch of a parrot

A sculpture of a pizza → An image of a balloon

A scene of a valley  → A scene of a valley with waterfall

A photo of an old church → A photo of an old church with a rainbow

Input
Time [sec]

Our inv.
[36]

DDIM inv.
[39]

PnP
[206]

CycleDiffusion
[36]

EDICT
[520]

null-text inv.
[160]

Figure S12. Additional qualitative comparisons between all methods.
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