
Supplementary Material

A. Overview
In the following, we discuss additional analysis of our ap-
proach, and provide further description of the model struc-
ture, implementation details, and evaluation procedures.
Appendix B offers an overview of diffusion models’ pre-
liminaries and equations. In Appendix C, we then specify
the chosen hyperparameters, training techniques, and sam-
pling methods. Appendices D–F respectively review the
datasets, metrics, and baselines we consider in this study.
Finally, in Appendix G, we present ablation and variation
studies that assess the contribution of each of our design
choices, complementing the principal ones explored in the
main paper.

Please see our website (soda-diffusion.github.io) for a
variety of animations and visualizations of outputs gener-
ated by the model over different datasets, spanning image
reconstructions, viewpoint traversals, latent interpolations,
unsupervised attribute discovery and manipulation, demon-
stration of style and content (or structure) separation, qual-
itative impact of layer masking and variation of the initial
noise map for different training data augmentation schemes,
and samples conditioned on partial information.

B. Model Overview & Diffusion Preliminaries
As a denoising diffusion model [5], SODA is formally de-
fined by a pair of forward and backward Markov chains
that represent a T -steps transformation from a normal dis-
tribution xT ∼ N (0, I) into the learned data distribution
x0 ∼ pθ(x) and vice versa, where x∈RH×W×3. Each
forward step t erodes xt by adding a small Gaussian noise
according to a fixed variance schedule αt, sampling:

xt ∼ N (
√
αtxt−1, (1− αt) I)

Meanwhile, each reverse step t performs image denois-
ing, and aims to estimate ϵt in order to recover pθ(xt−1 |
xt, z, c) where the latent representation z ∈RD serves as a
guidance source for denoising the image, and is produced
by the encoder through z = E(x′, c′), the image x′ is
a related clean input view given to the encoder, and c, c′

denote optional conditions for the encoder and decoder re-
spectively (e.g. source and target camera perspectives of
a 3D object). We note that this formulation contrasts with
unconditional diffusion models, which rely on (xt, t) only.
The reverse step is realized by a denoising decoder D that
predicts ϵ = ϵθ(xt, t,z, c). Thanks to the reparametriza-
tion trick [5], we can then sample the following:

xt−1 ∼ N
(

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(·)
)
, σ2

t I

)
where ᾱt =

∏t
s=1 αs is the product of the variances up to

step t, and σ2
t is either a fixed or learned variance term. To

train the model, we can readily obtain xt with the closed-
form computation (where ϵ ∼ N (0, I)):

xt =
√
ᾱtxt−1 + (1− ᾱt) ϵ

and couple it with the simplified re-weighted MSE training
objective (where ϵθ is estimated by the model):

L = Ex0,ϵ,t[∥ϵ− ϵθ]∥22

In terms of the architecture, our model consists of an im-
age encoder E (ResNet or ViT), and a denoising decoder D
that follows the classic structural design of prior literature
[5, 6], featuring a UNet implemented as a stack of resid-
ual, convolutional, and either downsampling or upsampling
layers (in the encoding and decoding modules of the UNet
respectively), that are further linked by symmetric skip con-
nections. The decoder D notably integrates Adaptive Group
Normalization layers [6, 49, 50] throughout, allowing z and
t to modulate the decoder’s activations of each layer h, by
scaling and shifting them channel-wise:

AdaGN(h, z, t) = zs(tsGroupNorm(h) + tb) + zb

where (ts, tb) and (zs, zb) are both obtained by linear pro-
jections, the former of a sinusoidal timestep embedding of t
[68], and the latter of the latent representation z created by
the image encoder E .

C. Implementation Details
Architecture. See Table 12 for our chosen hyperparame-
ters. In terms of the training objective, optimization scheme
and empirical configuration, we adopt most of the com-
mon settings of recent works [5–7], and specifically use
the Adam optimizer [109], gradient accumulation, and ex-
ponential moving average for the model’s weights; for the
ResNet encoder [71]: variant v2 ResNet [110], Xavier ini-
tialization [111], ReLU non-linearity, dropPath [112], and
mean pooling; and for the UNet decoder: truncated normal
initialization (JAX default), GeLU non-linearity [113],

√
2

rescaling of residual connections, BigGAN re-sampling or-
der [114], and self attention in the decoder’s low-resolution
layers (8-32).

Training. For each dataset, we train the model until con-
vergence, as measured by lack of improvement over a set
number of training steps along a validation metric of choice
(either downstream accuracy or SSIM). For sampling, we
use discrete-time DDPM [5], classifier-free guidance [27]
and 1000 diffusion timestemps, practically strided into 75-
250 steps [69]. We implement SODA in JAX [115], and run
our experiments either on NVIDIA Tesla V100s or TPUs
(v2).

Positional Encoding. We employ sinusoidal positional
encoding [68] to represent both timesteps and, in the case of

https://soda-diffusion.github.io/


Table 1. Novel View Synthesis (FID), comparing different approaches and aggregation methods as we vary the number of source views.
Stochastic Conditioning guides each sampling step with a randomly-chosen source view. Mean Aggregation conditions on multiple source
views by averaging their latents, while Transformer Aggregation instead uses a shallow transformer to aggregate the view representations.

GSO ShapeNet
# Source Views 1 3 5 7 9 1 3 5 7 9
NeRF-VAE [59] 74.835 79.984 76.965 81.334 80.926 45.791 42.165 36.592 35.441 34.134
SRT [80] 38.642 70.665 40.728 51.936 74.705 17.956 16.336 13.717 27.719 28.026
PixelNeRF [60] 48.721 20.659 7.934 5.906 3.622 25.341 9.679 4.591 3.607 2.557
SODA with Mean Aggregation 1.508 2.290 2.060 2.183 1.754 0.736 0.696 0.667 0.679 0.742
SODA with Stochastic Conditioning [89] 1.508 2.117 1.360 1.177 1.228 0.736 0.706 0.686 0.679 0.697
SODA (Transformer Aggregation) 1.508 0.962 0.797 0.711 0.653 0.736 0.491 0.458 0.378 0.319

Figure 1. Number of source views’ impact on models performance, along PSNR, SSIM, LPIPS and FID. We see that as we increase
the number of views, SODA achieves a bit higher SSIM score than PixelNeRF, comparable or lower PSNR, better LPIPS score, and much
better FID. Other approaches lag behind PixelNeRF and SODA. In terms of view aggregation, we see that stochastic conditioning performs
similarly to averaging the view representations, and that our transformer-based aggregation performs robustly better than these alternatives.

pose-conditional view synthesis, spatial coordinates, either
xy grids for the 2D case or camera rays’ origins and direc-
tions for 3D, normalized to a range of [−1, 1]. In contrast
to the original encoding scheme used to represent discrete
word positions, we further scale the arguments of sin and
cos by a factor of 2πs (with s being a hyperparameter), so
to increase the distinction among the positional encodings
(Figure 10).

Pose Conditioning. Throughout the paper, we experi-
ment with several different flavors of the novel view syn-
thesis task: either generating a view conditionally, match-
ing a 3D pose or 2D coordinates, or alternatively, in a
pose-unconditional fashion: where given a source view, the
model is asked to generate arbitrary novel views at perspec-
tives of its choice). For the conditional case, we represent
each perspective by a H×W 2D grid – of (x0, y0)×(x1, y1)
in the 2D case, and ray positions and directions in the 3D
case – embedded by sinusoidal positional encoding and

concatenated to linearly-mapped RGB channels of the cor-
responding view, after the first layer of the encoder and the
denoiser respectively. In Appendix G, we compare different
ways to represent the rays, such as through normalization,
by casting them on a plane or a sphere, or by summing up
their positions and directions.

Learning Rates. For the ImageNet dataset, we main-
tain a different learning rate between the encoder and the
denoiser, at a ratio of lrE

lrD
> 1. We practically implement

it by following the idea of learning rate equalization [116],
scaling down the initialized weights of the encoder by a fac-
tor of k (by scaling down the standard deviation of the ini-
tialization distribution), and then having the network itself
scale them back up by k, effectively scaling the encoder’s
gradients by k. While the model is robust to the selection
of the learning rate ratio, we find that a ratio of 2 yields
optimal downstream results (Appendix G).



Table 2. Performance Comparison on CelebA of classification, reconstruction, and disentanglement, considering variational, adversarial
and diffusion-based approaches. Disen. stands for Disentanglement, Comp. for Completeness, and Info. for Informativeness.

Method Latent Dim F1 ↑ Disen. ↑ Comp. ↑ Info. ↑ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Variational Approaches
Vanilla Auto-Encoder 2048 66.35 38.94 29.82 84.52 21.61 0.906 65.50 0.327
AnnealedVAE [106] 2048 68.94 42.99 30.75 85.53 15.94 0.686 145.28 0.433
FactorVAE [63] 2048 71.26 46.34 29.87 88.06 20.17 0.890 87.19 0.331
DIP-VAE (I) [107] 2048 71.94 49.09 37.58 89.23 19.83 0.884 81.02 0.316
DIP-VAE (II) [107] 2048 71.85 48.56 33.37 89.12 19.95 0.887 82.41 0.307
β-VAE [67] 2048 71.98 49.04 32.46 89.37 19.94 0.886 78.65 0.314
β-TCVAE [108] 2048 71.82 49.11 31.63 89.10 20.18 0.892 80.33 0.315
Adversarial Approaches
VQGAN [75] 256×16×16 - - - - 23.28* 0.773* - 0.311*
StyleGAN2,W [85] 512 - 53.26 56.15 96.71 16.76* 0.662* - 0.394*
StyleGAN2,W+ [85] 512×14 - 52.71 60.03 94.46 21.42* 0.813* - 0.345*
Diffusion-based Approaches
Unconditional Diffusion - 63.67 41.33 30.72 84.94 - - 25.33 -
DiffAE [48] 512 68.70 64.39 39.25 84.61 15.28* 0.681* - 0.392*
DALL-E2 (with CLIP) [8] 1024 71.08 51.60 37.82 87.87 9.34 0.311 21.91 0.484
SODA (ResNet50×2) 2048 72.65 79.93 53.62 90.44 18.78 0.859 9.54 0.273

D. Datasets, Preprocessing & Augmentations
D.1. Datasets Overview

Throughout this work, we evaluate models over various
datasets grouped into multiple tasks, as summarized by Ta-
ble 10 and through the textual description below:

Representation Learning & Reconstruction:
Each image in the following datasets is associated with a
category label (or for CelebA, with multiple attribute anno-
tations).

(1) Imagenet1K [117]: includes diverse images of objects
among 1,000 categories of e.g. animals, instruments,
furniture and food items.

(2) CelebA-HQ [105]: features face images, annotated
with 40 binary semantic properties like age, gender,
or hair color; used also for quantitative disentangle-
ment analysis.

(3) LSUN [118]: partitioned into multiple categories of
objects (like cars, cats and horses) and scenes (e.g.
bedrooms and churches); See Table 10 for full list.

(4) Animal Faces-HQ (AFHQ) [119]: covers various
breeds of cats, dogs and wildlife.

(5) Oxford Flowers 102 [120]: features diverse flowers
from the United Kingdom.

Novel View Synthesis:
Each image in the following datasets is associated with the
camera perspective it was captured from, expressed as a grid
of ray positions and directions r = (o,d).

(6) NMR [88]: consists of ShapeNet [87] objects’ render-
ings at 24 fixed views, evenly spaced around a sur-
rounding ring with constant radius and altitude; im-
ages of 64×64 resolution. We use the SoftRas data
split [121].

(7) ShapeNet: our custom ShapeNet renderings dataset,
featuring 120 views randomly sampled from an upper
hemisphere, with random azimuth ϕ, altitude θ, and

radius r∈ [rmin, rmax]; 256×256 resolution; created by
the Blender-based Kubric library [122].

(8) Google Scanned Objects (GSO) [86]: includes scans
of real-world household items, which we render with
Blender following the same protocol described above.

Disentanglement (Quantitative):
Each image in the following datasets is associated with dis-
crete semantic attribute annotations.

(9) SmallNORB [101]: contains toy images belonging to
5 categories like animals and vehicles, captured from
various camera perspectives and lighting conditions.

(10) 3DShapes [103]: includes images of a centered object
among varied combinations of shape, color, size and
orientation (4 shapes, 8 scales, 15 orientations, and 10
possible colors for the object, wall and floor).

(11) MPI3D [102]: includes 4 splits of either synthetic or
real objects, hold by a robotic arm, with different dis-
crete attributes (4-6 shapes, 4-6 colors, 2 sizes, 3 back-
ground colors, and 3× 40× 40 camera perspectives).

(12) Caltech-UCSD Birds (CUB-200-2011) [104]: con-
tains images of various bird species, annotated with
312 binary semantic properties.

D.2. Data Preprocessing

Resolution. We resize all images for training and evalu-
ation to a source resolution of 256×256, inputted into the
encoder E , and target resolution 128×128, produced by the
decoder D, with the exception of CUB and ImageNet: for
the former, we center-crop and pad each image based on its
associated bird’s bounding box; for the latter, we first resize
the target images to 256×256, and then center-crop them to
224×224, matching prior literature [53, 58].

We keep the model’s output resolution as 128 since ac-
cording to diffusion models’ practices, higher-resolution
images are commonly produced through cascading [123],
where a core module first generates images of resolution 64



Figure 2. Impact of source view noise on the model’s generative and representational capabilities.

or 128, and these are these are subsequently post-processed
by an independent super-resolution module, rather than be-
ing created as high-resolution directly. Indeed, this tech-
nique has been shown to improve the overall sample quality,
and could readily fit with our approach as well.

Normalization. We normalize the input images fed into
the encoder E based on ImageNet mean and variance statis-
tics [124], while linearly scaling the target images of the de-
noising decoder D to the range [−1, 1], following the stan-
dard procedures.

Data Splits. For each dataset, we either use the de-
fault splits, or if not provided, split them into 80% training,
10% validation and 10% testing. Data is shuffled at training
time. We note that for all the multi-view datasets: NMR,
ShapeNet, GSO, and smallNorb, we intentionally keep all
the views of each object exclusively grouped within one of
the splits, and consequently, all the objects used for evalua-
tion are not included in the training set.

D.3. Data Augmentation

We study several augmentation schemes, applied for differ-
ent tasks and datasets: by default, we use random resize
cropping, horizontal flipping and optionally RandAugment
[79] data augmentation on both the source and target views
x′ and x (encoded and denoised respectively). Specifically,
at every training step, we randomly augment each view,
at the rates specified in Table 12. To train the subsequent
downstream classifier, we perform cropping and flipping
only, and finally, at evaluation time, perform only center-
cropping, following the standard linear probing protocols of
prior self-supervision learning works [53, 56]. When train-
ing the diffusion model, we also find it conducive to add
low Gaussian noise to the encoded source view, similarly to
the noise added to the denoised target view.

Meanwhile, for multi-view 3D datasets such as NMR,
GSO and ShapeNet, we do not apply data augmentations,
and instead, randomly sample one view as the source and
another as the target, further supplied by their respective
camera perspectives (Appendix C). In this case, we allow
for conditioning on multiple source views, and conduct ex-
periments over k∈ [1 − 9] sources. Lastly, to illustrate the

ability of SODA to learn useful representations even with-
out relying on data augmentation, we perform ablations on
datasets used as is, forgoing augmentations of any kind.

E. Evaluation & Metrics

We explore SODA for multiple types of tasks and purposes:
downstream linear-probe classification and disentanglement
analysis for assessing the quality of the learned represen-
tations, as well as image reconstruction and novel view
synthesis for evaluating the model’s generative capabilities.
These skills are measured both through qualitative inspec-
tion of the latent space, with visualizations that demonstrate
its impact on the model’s outputs (including in particular la-
tent interpolations and unsupervised attribute discovery), as
well as through an assortment of metrics that quantify each
of the capabilities as discussed below.

E.1. Linear Probing

In Section 4.1, we analyze the model’s learned latent rep-
resentations by measuring their predictive performance on
a downstream classification task. Following the common
evaluation protocol [53, 56, 58], we first train our model
on a collection of images, and then fit a linear classifier
that considers the latent encodings produced by the model
and use them to predict each respective image’s category or
semantic attributes. The classifier is either trained on the
frozen representations z subsequently to the training of the
diffusion model, or alternatively, trained with it in tandem
by blocking the gradient flow between the two networks –
we find that both approaches achieve similar results.

When training the classifier, we refrain from applying
weight decay, and adhere to either light augmentation of
cropping and flipping for ImageNet or no augmentation in
other cases. The latents z are normalized before being fed
to the classifier, concretely, by processing them with an un-
parameterized batch normalization [53], which only tracks
mean and variance statistics and lacks the follow-up affine
transformation. After normalizing the latents, we use 0.1
dropout for regularization, and for ImageNet, apply label
smoothing of 0.1. Since the annotated datasets we explore



Table 3. Disentanglement Analysis, comparing SODA to variational approaches on various datasets. Our model achieves improvements
of 27.2-58.3% in Disentanglement, 5.0-23.8% in Completeness, and comparable Informativeness. Its reconstructions are often sharper and
more accurate. Metrics: Disen. stands for Disentanglement, Comp. for Completeness, and Info. for Informativeness. PSNR, SSIM, and
LPIPS respectively express pixel-wise, structural and perceptual/semantic similarity, while FID captures sharpness and fidelity.

Method Disen. ↑ Comp. ↑ Info. ↑ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
MPI3D (Toy)
AnnealedVAE [106] 18.43 21.44 52.47 29.49 0.852 118.18 0.169
FactorVAE [63] 22.41 27.06 60.79 34.60 0.959 31.64 0.075
DIP-VAE (I) [107] 51.12 41.33 72.05 37.34 0.977 22.33 0.057
DIP-VAE (II) [107] 24.88 27.37 64.83 36.68 0.976 25.52 0.062
β-VAE [67] 25.34 28.57 64.65 36.86 0.977 24.61 0.061
β-TCVAE [108] 32.21 40.10 64.03 35.17 0.965 30.81 0.072
SODA w/o layer mod. 83.44 55.65 85.38 50.21 0.998 2.64 0.015
SODA (ours) 87.38 54.79 84.78 50.72 0.999 1.49 0.014
MPI3D (realistic)
AnnealedVAE [106] 18.76 19.93 51.66 32.54 0.968 55.95 0.201
FactorVAE [63] 30.80 36.63 60.82 34.51 0.980 29.76 0.181
DIP-VAE (I) [107] 45.61 42.37 66.59 36.23 0.986 24.90 0.169
DIP-VAE (II) [107] 29.63 35.85 64.85 36.33 0.986 25.14 0.170
β-VAE [67] 25.14 26.15 61.48 36.54 0.987 24.46 0.168
β-TCVAE [108] 35.81 41.07 66.83 36.71 0.988 24.41 0.167
SODA w/o layer mod. 71.73 51.07 76.53 39.40 0.995 3.42 0.109
SODA (ours) 85.19 56.26 77.78 40.65 0.996 3.84 0.069
MPI3D (real)
AnnealedVAE [106] 17.62 17.41 53.60 31.97 0.963 40.33 0.083
FactorVAE [63] 33.99 41.48 59.74 34.19 0.978 33.70 0.062
DIP-VAE (I) [107] 53.01 40.35 72.05 36.68 0.988 18.31 0.037
DIP-VAE (II) [107] 33.54 38.72 65.57 36.37 0.987 20.36 0.041
β-VAE [67] 48.56 48.20 68.19 36.64 0.988 19.35 0.038
β-TCVAE [108] 48.60 44.68 67.03 36.47 0.987 19.74 0.040
SODA w/o layer mod. 75.47 51.30 77.32 41.03 0.998 1.57 0.007
SODA (ours) 81.19 50.92 77.69 42.51 0.997 0.61 0.006
MPI3D (complex)
AnnealedVAE [106] 21.08 21.27 57.73 31.37 0.952 39.71 0.077
FactorVAE [63] 37.50 48.55 68.12 32.93 0.966 36.27 0.067
DIP-VAE (I) [107] 58.49 51.67 76.64 35.14 0.980 23.50 0.042
DIP-VAE (II) [107] 35.00 40.21 72.30 35.03 0.979 27.44 0.045
β-VAE [67] 51.82 50.70 74.47 35.58 0.982 22.78 0.039
β-TCVAE [108] 42.99 46.39 74.26 35.42 0.981 24.90 0.042
SODA w/o layer mod. 86.55 56.60 77.43 44.23 0.998 0.47 0.007
SODA (ours) 89.76 56.98 78.22 43.18 0.997 0.44 0.006
3DShapes
AnnealedVAE [106] 58.14 66.97 91.23 30.77 0.994 54.83 0.063
FactorVAE [63] 87.62 87.52 98.64 30.37 0.994 48.89 0.058
DIP-VAE (I) [107] 99.75 82.59 99.97 34.23 0.997 31.04 0.031
DIP-VAE (II) [107] 99.22 83.01 99.99 33.87 0.997 32.41 0.033
β-VAE [67] 99.87 83.51 99.96 33.93 0.997 29.52 0.032
β-TCVAE [108] 90.92 74.78 99.81 34.62 0.998 29.03 0.031
SODA w/o layer mod. 92.18 78.21 99.27 51.75 0.9997 0.36 0.0003
SODA (ours) 98.60 84.76 98.88 52.54 0.9999 0.32 0.0002
SmallNORB
AnnealedVAE [106] 21.50 17.62 60.30 28.40 0.900 164.94 0.271
FactorVAE [63] 37.01 44.58 68.52 27.67 0.885 148.40 0.267
DIP-VAE (I) [107] 34.13 35.51 71.85 28.92 0.907 114.48 0.226
DIP-VAE (II) [107] 37.94 45.76 69.89 29.15 0.909 122.10 0.232
β-VAE [67] 37.79 42.40 71.01 29.25 0.912 120.31 0.229
β-TCVAE [108] 37.43 43.51 70.75 29.20 0.909 120.28 0.230
SODA w/o layer mod. 63.12 45.82 68.36 16.06 0.756 47.90 0.253
SODA (ours) 72.60 51.56 70.19 15.47 0.734 44.81 0.235
CUB
AnnealedVAE [106] 37.53 11.59 91.71 14.73 0.244 275.35 0.716
FactorVAE [63] 39.14 11.68 92.04 16.26 0.517 244.70 0.637
DIP-VAE (I) [107] 36.44 10.61 92.12 15.05 0.421 233.65 0.642
DIP-VAE (II) [107] 37.43 12.19 92.05 14.97 0.409 227.14 0.647
β-VAE [67] 38.22 11.88 92.06 15.10 0.428 234.52 0.639
β-TCVAE [108] 40.43 13.39 91.95 15.26 0.389 237.96 0.652
SODA w/o layer mod. 62.05 14.35 87.86 12.96 0.423 20.30 0.503
SODA (ours) 65.40 17.43 88.10 13.04 0.344 17.21 0.492



Figure 3. Impact of classifier-free guidance and number of sampling steps and noise schedule on the model’s performance.

all have discrete labels, we use softmax cross entropy to
train the classifier, and report its performance along metrics
such as F1 for binary attributes, and top1 accuracy for other
ones.

E.2. Image synthesis

In Section 4.2.1, we analyze the capacity of SODA to both
reconstruct an input view and generate novel views. Given a
target image x, we assess the quality of a synthesized output
x̂ through multiple complementary metrics that range from
visual to semantic similarity:

(1) Peak Signal-too-Noise Ratio (PSNR) ↑ (measured in
dB) [81]: is directly derived from the mean MSE be-
tween x and x̂, and it thereby measures pixel-wise
similarity. It may rate a blurry estimation as highly
consistent with the target, as long as they match well
with each other on average.

(2) Structural Similarity Index Measure (SSIM) ↑
(ranges between [−1, 1]) [82]: compares images
along three perceptual factors: luminance, contrast
and structure, and is thus better correlated with the
Human Visual System (HVS).

(3) Learned Perceptual Image Patch Similarity
(LPIPS) ↓(often normalized to be in [0, 1]) [84]:
computes the distance between the target and
synthesized images in the feature space of a su-
pervised pre-trained network, such as VGG [125],
and therefore serves as an indicator for semantic
similarity.

(4) Fréchet inception distance (FID) score ↓ (is ≥0)
[83]: quantifies realism and sharpness of the gener-
ated images by comparing their distribution to that of
the target ground-truth images. It concretely achieves
it by considering the mean and variance of each, in
a latent feature space, e.g. of the Inception model
[126]. When assessing unconditionally-generated im-

ages, the FID score further expresses their diversity,
but in the case of conditional synthesis, either as re-
constructions or with pose conditioning, it mainly re-
flects their fidelity, sharpness and lack of distortions
(also known as R-FID in this context).

For fair comparison, we compute these metrics over all
approaches using the same metrics’ implementations, and
specifically, casting the images to the range of [0, 1] for
PSNR, [−1, 1] for FID and LPIPS, and using a uniform ker-
nel to calculate SSIM scores.

E.3. Disentanglement

In Section 4.3, we examine the latent space of our model
and assess its degree of disentanglement and controllability
through quantitative and qualitative evaluation methods:

DCI metrics (Disentanglement, Completeness & In-
formativeness) ↑ (at a range of [0, 100%]) [94]: measures
the 1:1 alignment between the latent representation z and
the natural (ground-truth) factors of variation c. Disentan-
glement reflects the extant to which each latent variable ẑj
(the j’th axis of the vector z) corresponds to a unique nat-
ural factor cj . Completeness inversely measures the ex-
tant to which each natural factor cj is captured by a single
latent variable ẑj . Finally, Informativeness indicates the
predictability of the natural factors c from the latent encod-
ing z. These metrics are derived from the normalized im-
portance matrix of a learned classifier and its performance,
where the classifier is based on either gradient boosting or
Lasso (we use the former). Our implementation of these
metrics closely follows Locatello et al. [61].

Latent Interpolation: we randomly pick two images
x1,x2 from each dataset, encode them to obtain z1, z2, and
then decode back the latents along a linear segment that con-
nects between the endpoints: z1 +(z2 − z1)·t for t∈ [0, 1],
which results in a visualization of the latent traversal.

Principal Component Analysis (PCA) [100, 127]: we



Table 4. Ablations on ShapeNet, varying the camera view-
point encoding schemes, including coordinate system: Polar or
Cartesian, rays’ representation method: by origin and direction
[o,d], or with a weighted sum o + sd·d, and conditioning mode:
through 2D grid concatenation or vector-based modulation (either
of absolute or relative camera perspective).

Method Coordinates PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Concat Cartesian 27.21 0.945 0.82 0.040
Concat Polar 27.10 0.940 0.93 0.041
Sphere Cartesian 27.12 0.946 0.75 0.040
Normalized Cartesian 27.00 0.941 0.78 0.041
Plane Cartesian 27.03 0.943 0.78 0.041
Sphere Polar 27.42 0.947 0.74 0.039

Conditioning Coordinates PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Absolute Polar 23.81 0.870 2.65 0.059
Grid+Relative Polar 26.81 0.941 0.87 0.040
Grid+Absolute Polar 27.27 0.946 0.80 0.040
2D Grid Polar 27.42 0.947 0.74 0.039

Table 5. Ablations on ImageNet for feature modulation (mod.),
evaluated through reconstruction and classification.

Ablation PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ Top1 ↑
w/o scale mod. 21.33 0.910 5.33 0.224 70.31
w/o layer mod. 17.61 0.800 9.99 0.377 68.10
sum mod. 13.78 0.541 15.24 0.483 61.46
concat mod. 13.57 0.522 16.68 0.494 59.87
SODA (default) 23.63 0.931 2.77 0.191 72.24

encode a sample set of N images (1,000-10,000), and per-
form PCA decomposition over the obtained latents zN

i=1,
which yields the latent directions sj of the greatest varia-
tion. We then traverse the latent space along the discovered
directions: z+sjt for t∈ [−

√
λj ,

√
λj ] where λj is the re-

spective eigenvalue and
√
λj is the standard deviation along

direction sj . Doing so allows us to visualize the impact of
these latent directions on the model’s generated images, and
indeed, we find they strongly correlate with semantically-
meaningful manipulations.

Thanks to layer modulation (Section 3.2.1), we can fur-
ther perform PCA over chosen sub-vectors of z that are
responsible for guiding decoder’s layers of interest. This
enables the discovery of latent directions that control par-
ticular levels of granularity, from low-frequency structural
aspects to high-frequency factors like texture and color, en-
hancing the model’s overall controllability.

Classifier-based Attribute Manipulation: For datasets
with binary attributes annotations, such as CelebA and
CUB, we can produce similar visualizations to the ones de-
scribed above by examining the weight matrix’s rows of the
linear probes we train for the downstream classification ex-
periments (Section 4.1). Indeed, these probes are trained to
capture the latent directions that correspond to the presence
or absence of the semantic attribute annotations that accom-
pany the datasets we study. The key difference between the
PCA-based approach and this technique is that the former
is unsupervised while the latter is not.

Figure 4. Positional Encoding Scales. We visualize the positional
encodings in the range of [-1,1], with each embedding visualized
vertically within each plot. When the positional encoding scale
is set to a too low value (right column), the encodings are less
distinctive and their capacity is under-utilized (as many of the fea-
tures (rows) get the the same value for all positions). Meanwhile,
a too high value (left column) damages the positional encodings
empirical performance. We thus make sure to select a medium
scale (middle column) for optimal performance.

F. Baselines
For each of the tasks we explore, we compare our model to
the respective leading approaches, as well as to additional
ablated baselines that we design. Here, we list and review
all the baseline methods we compare to.

F.1. Task-Agnostic Baselines

First, we implement multiple baselines and ablated models
within our diffusion codebase, and report their performance
across the range of tasks:

(1) EncDec: a vanilla encoder-decoder x̂ = D(E(x′)),
sharing the same encoder and decoder architectures
as SODA (for D, the decoding module of the UNet),
but being trained to generate the target image x from
scratch, with no denoising. We train this model both
with and without (x = x′) data augmentation.

(2) Uncond: an unconditional diffusion model D (see also
DDAE [19]). To obtain an encoding z for an image x,
we compute D(x̃) over a lightly-noised version of x
and pool the activations from the middle layer of the
UNet denoiser (The layer index and noise degree are
hyperparameters chosen for highest performance).

(3) Palette: a diffusion model that instead of having a ded-
icated encoder E , concatenates the source image x′

to the denoised image xt directly, and inputs both of
them to a UNet denoiser D(xt,x

′) (also known as
Image-to-Image diffusion model [30]).

(4) unCLIP (Dall-E2) [8]: a diffusion model that relies
on a frozen pretrained CLIP [128] as the encoder E .



Table 6. Datasets Configuration & Statistics. (⋆) LSUN sizes per partition: Bedrooms (3.03M), Church Outdoors (126K), Bird (2.31M),
Car (5.52M), Cat (1.66M), Dog (5.05M), Horse (2.00M).

Dataset Size Resolution # Categories Augmentation Source View ResNet Learning Batch Guidance
(Raw) / Attributes / Views Noise Scale Size Rate Size

Imagenet1K [117] 1.28M Varied 1000 RandAugment 0.10 50×2 4×10−4 4096 2
CelebA-HQ [105] 30K 1000 2×40 Gaussian Noise 0.22 50×2 4×10−4 4096 2
LSUN [118] (⋆) Varied - Gaussian Noise 0.22 50×2 4×10−4 4096 2
AFHQ [119] 15K 512 3 Gaussian Noise 0.22 50×2 4×10−4 4096 2
NMR [88] 1.05M 64 13 24×43.8K 0.00 50 2×10−4 2048 2
ShapeNet [87] 6.28M 256 55 120×52K 0.00 50 2×10−4 2048 2
GSO [86] 120K 256 17 120×1K 0.00 50 2×10−4 2048 2.5
SmallNORB [101] 24.3K 96 18,5,9,6 Gaussian Noise 0.05 18 1×10−4 1024 3
3D-Shapes [104] 480K 64 4,10,10,10,15,8 Gaussian Noise 0.05 18 1×10−4 1024 3
MPI3D (Toy) [102] 1.03M 64 6,6,2,3,3,40,40 Gaussian Noise 0.05 18 1×10−4 1024 3
MPI3D (Realistic) [102] 1.03M 64 6,6,2,3,3,40,40 Gaussian Noise 0.05 18 1×10−4 1024 3
MPI3D (Real) [102] 1.03M 64 6,6,2,3,3,40,40 Gaussian Noise 0.05 18 1×10−4 1024 3
MPI3D (Complex) [102] 461K 64 4,4,2,3,3,40,40 Gaussian Noise 0.05 18 1×10−4 1024 3
Caltech-UCSD Birds (CUB) [104] 11.8K Varied 2×312 Gaussian Noise 0.05 18 1×10−4 1024 3
Oxford Flowers [120] 8.2K Varied 102 Gaussian Noise 0.05 18 1×10−4 1024 3

We emphasize that we do not refer here to the already
trained Dall-E2 model, but rather to its architecture,
and so we train its denoiser (in a comparable size to
our model) from scratch along with the frozen pre-
trained CLIP encoder, for each dataset of interest.

(5) w/o bottleneck: an ablation of SODA with no bottle-
neck, which rather encodes the input image x′ into
a 2D feature grid zw×h, with no global pooling, and
conditions the denoising on it through cross-attention
(similarly to text-to-image diffusion models [7]).

(6) w/o modulation: an ablation of SODA that broadcasts
and concatenates the latent z to linearly-mapped RGB
channels of the denoised image xt, instead of apply-
ing modulation through adaptive group normalization
(also called a spatial broadcast decoder [129]).

F.2. Linear-Probe Classification

For downstream classification, we compare our model to
a diverse array of leading self-supervised learning ap-
proaches: generative methods like MAE [53], BEIT [54]
and iGPT [55] split each image into a grid of tokens or
patches, mask some patches and predict them back from the
unmasked ones, oftentimes using a transformer backbone.

Meanwhile, discriminative approaches leverage con-
trastive learning (as in SimCLR [58]), clustering techniques
(as in SwAV [57]), and distillation (as in DINO [56] and
BYOL [72]) to derive visual representations. At the core of
these methods is a strong reliance on rich data augmenta-
tions, which are essentially the driving force that allows the
to perform unsupervised clustering.

Consequently, contrastive learning approaches operate
well at tasks that involve identification of an image’s cat-
egory, as is the case for ImageNet, but may struggle to cap-
ture finer traits that are altered by the augmentations. The
semantic properties they may or may not encode into the
learned representations heavily depend on the particulari-
ties of the data augmentation scheme they employ, since

they are basically encouraged to form a latent space that is
invariant to the augmentation applied, instead casting dif-
ferent augmentations into similar representations.

Contrary to these two kinds of approaches, both of which
are unsuitable for high-quality image generation, SODA
stands out being able to both encode input images into
meaningful latents, and also synthesize back crisp output
images, conditionally and unconditionally. It learns com-
pact and disentangled representations, which contrast with
the large, potentially discrete, 2D grids learned by alterna-
tive approaches, and as demonstrated in Section 4.1, is ro-
bust to the chosen data augmentation scheme, operating
well even in its absence.

Our comparison to the approaches discussed in this sub-
section relies on the performance reports in their respective
publications over the ImageNet1K dataset, with the excep-
tion of the crop+flip accuracy for SwAV and DINO’s for
which we retrain the models.

F.3. Image Reconstruction

We examine the performance of varied models for the task
of image reconstruction: Dall-E [74] and VQGAN [75] em-
ploy a discrete variational auto-encoder [130], which casts
input images into 2D token grids, based on a trainable code-
book. These approaches then couple the auto-encoder with
a prior-distribution model, to enable unconditional image
synthesis. However, for our purposes (image reconstruc-
tion), we consider the auto-encoder module only.

The adversarial StyleGAN model [49] can also be used
for image reconstruction, by applying optimization-based
inversion techniques to infer back latents from images.
Given an image x, they leverage gradient descent to re-
verse engineer the latent z that gives rise to an output x̂
that is as close as possible to the image x while still staying
on the model’s learned manifold. While these techniques
tend to produce samples that share semantic properties with
the source images, they oftentimes fail to reconstruct them



Table 7. Ablations on CelebA, evaluted through classification, reconstruction, and disentanglement. The no-bottleneck ablation (⋆) has
skip connections between the model’s input and output, making the reconstruction task trivial, but simultaously damaging the learned
representations’ quality. Disen. stands for Disentanglement, Comp. for Completeness, and Info. for Informativeness.

Ablation F1 ↑ Disen. ↑ Comp. ↑ Info. ↑ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
w/o bottleneck 58.89 36.61 26.12 83.15 27.29⋆ 0.985⋆ 6.61⋆ 0.099⋆

w/o modulation 60.38 64.51 40.85 84.11 14.53 0.734 20.58 0.332
w/o layer modulation 70.90 67.25 42.53 87.06 16.79 0.821 10.35 0.288
w/o layer mask 70.36 68.41 43.41 87.45 16.98 0.820 11.39 0.285
w/o scale modulation 69.65 67.41 44.84 87.63 16.53 0.816 10.49 0.290
sum modulation 68.31 61.12 40.53 85.88 16.71 0.816 17.95 0.290
concat modulation 67.58 61.34 40.67 86.02 16.67 0.816 17.35 0.289
SODA (ResNet50, default) 71.63 73.90 48.81 87.64 18.24 0.842 10.09 0.275

faithfully. Finally, we compare our model to the diffusion-
based DiffAE [48], which, in contrast to our study, focuses
on auto-encoding only, and can be viewed as a predecessor
of our approach, as discussed in Section 2.

We assess the reconstruction capabilities of the ap-
proaches described in this subsection by evaluating a sam-
ple set of images produced by their associated public pre-
trained checkpointed models.

F.4. Novel View Synthesis

For novel view synthesis of 3D objects, we compare SODA
to a collection of geometry-free and -aware approaches
designed for few-shot settings: PixelNeRF [60] learns to
translate a small number of source views into a neural ra-
diance field, and then use volumetric rendering techniques
to generate new ones. NeRF-VAE [59] extends this idea
by leveraging amortized variational inference to learn prob-
ablistic neural scene representations. In contrast to these
specialized methods, designed specifically for 3D environ-
ments, SODA proves considerably more versatile, success-
fully addressing a broader spectrum of tasks and datasets.

As an alternative to differentiable rendering, geometry-
free approaches often use attention mechanisms to directly
transform source views into targets: Scene Representa-
tion Transformer (SRT) [80] parametrizes scenes with the
computationally lighter and faster Light-Field formulation
[131], and synthesize output views from new perspectives
by directly attending to the input views’ encodings. The
diffusion-based 3DiM [89] goes further and makes exten-
sive use of cross-attention throughout all of its network’s
layers so to directly map sources to targets. In contrast to
these approaches, we intentionally introduce a bottleneck
into our model that induces a meaningful and compact la-
tent space. This, in turn, offers much tighter control over
the model’s generative process, opening the door for both
semantic manipulation of given scenes, as well as uncondi-
tional synthesis of new ones – two new capabilities that are
out of these prior works’ reach.

We evaluate the methods described in this subsection ei-
ther using the authors’ official implementations (for NeRF-
VAE), or with our own re-implementations (for PixelNeRF
and SRT), matching the originally reported performance.

F.5. Disentanglement

In terms of disentanglement, we analyze SODA over a suite
of semantically-annotated datasets, and compare it with a
series of variational approaches [66], which are tradition-
ally known for encouraging the formation of disentangled
representations: β-VAE [67], re-weights the KL regulariza-
tion term to constrain the latents’ capacity; AnnealedVAE
[106] slowly relaxes the encoder-decoder bottleneck so to
foster gradual learning; FactorVAE [63] and β-TCVAE
[108] encourage factorization of the latent distribution by
reducing the correlations among the axes; DIP-VAE [107]
(variants I and II) penalizes the mismatch between the prior
and the posterior, so to similarly encourage factorization
within the latter. We evaluate these methods using the offi-
cial disentanglement-lib TensorFlow repository [61], while
modifying the backbone encoder and decoder architectures
to match the ones used in SODA, for better comparability.

G. Ablation Studies
To gain better insight into the relative contributions our
design decisions make, we conduct thorough ablation and
variation studies for each of the model’s components, in-
specting the (1) feature modulation used to propagate in-
formation between the encoder and the denoiser, (2) data
augmentation strategies for the source and target views,
encoding and conditioning schemes of (3) positional infor-
mation for our 3D multi-view experiments, (4) sampling
configurations of the denoising process and its classifier-
free guidance, and finally, (5) the encoder and denoiser’s
respective sizes, dimensions and learning rates.

This study joins ablations presented through the main
paper (Sections 4.1 and 4.3.2) that attest to the strengths
and benefits of the model’s core aspects and key innova-
tions, like bottleneck compactness (Section 3.2), layer mod-
ulation (Section 3.2.1), redesigned noise schedule (Sec-
tion 3.4), and incorporation of novel view synthesis as a
self-supervised training objective (Section 3.3).

G.1. Feature Modulation

We explore multiple modulation variants and examine how
they fare in terms of generative skills and downstream per-



Table 8. Hyperparameters of our model, including the encoder, denoiser, linear probe, and view aggregation transformer (for 3D experi-
ments), as well as optimization, sampling and augmentation settings. (⋆) Depends on the dataset. (†) Applied for ImageNet only. (∗) We
use a base value of 64 for ImageNet pre-training for downstream classification, and 128 otherwise.

Hyperparameter Value
Optimization
Learning Rate⋆ (1-4)×10−4

Batch Size⋆ 1024-4096
Learing Rate Schedule† Cosine Decay
Learing Rate After Decay† 0.25×LR
Learning Rate Decay Steps† 1.2×105

Weight Decay 0.05
EMA Decay Rate 0.9999
Warmup Steps 5000
Gradient Clipping Norm 0.5
Optimizer Adam
β1 0.9
β2 0.95
Model
Latent Dimension⋆ 128-2048
Bottleneck Dropout 0.1
Classifier-Free Guidance Masking Rate 0.12
Layer Masking Rate 0.15
Positional Encoding Dimension 512
Positional Encoding Scale (Figure 10) 0.0001
Encoder
Architecture ResNet
Size⋆ 18, 50, 50×2
Version v2
Resolution 256 (224†)
LR multiplier 2
DropPath [112] 0.1
View Aggregation Transformer
Depth 2

Hyperparameter Value
Attention Heads Number 4
Hidden Layer Multiplier 4
Denoiser
Architecture UNet
Resolution 128
Base Channels∗ 64-128
Channels multipliers 1,1,2,3,4
Residual blocks per resolution 2
Selt-Attention resolution 8,16,32
Attention Head Dimension 64
Normalization Type GroupNorm [51]
Dropout Rate 0.1
Sampling
Classifier-Free Guidance⋆ 2-3
Diffusion Training Steps 1000
Sampling Strided Steps⋆ 75-250
Linear Probe
Weight Initialization Scale 0.02
Bias Initialization Scale† -10.0
Dropout Rate 0.1
Augmentation Rate (RandomResizedCrop) 0.65
Label Smoothing† 0.1
Data Augmentation
Augmentation Rate (Cropping+Flipping) 0.95
Distortation Rate (RandAugment [79]) 0.65
Distortion Layers Number 2
Distortion Magnitude 9
Distortion Magnitude STD 0.5
Source View Noise Scale⋆ 0-0.22

formance (Tables 7, 9 and 11). As the results suggest,
modulation-based conditioning proves considerably more
effective than alternative mechanism such as input concate-
nation [xt,x

′] (Palette [30]) or spatial broadcasting (w/o
modulation) [129], with respective deltas of 15.5% and
12.3% at classification over ImageNet (top1) and CelebA
(F1), and 0.32 (out of 1.0) mean SSIM improvement at
novel view synthesis. Layer modulation proves bene-
ficial too, enhancing disentanglement scores, with up to
13.9% improvement, and generative capabilities, with 0.13
increase in SSIM and halving of LPIPS for ImageNet re-
constructions.

We further assess ways to integrate the guidance of the
timestep t and the latent z, and as an alternative to our
two-stage guidance approach, where the denoiser’s activa-
tions h are modulated first by t and subsequently by z, we
map them instead to a single pair (ws,wb) either through
summation or concatenation (sum/concat mod.) which is
then used to modulate the activations: AdaGN(h, t,z) =
wsGroupNorm(h) + wb However, our two-step strategy
proves stronger than this variant. Likewise, scaling the fea-
tures multiplicatively with zs, as opposed to adding a bias
term zb only, leads to small improvements across different
datasets.

G.2. Data Augmentation

We examine the impact of data augmentations on the
model’s performance, and analyze variations of the aug-

mentation method itself as well as the inputs it is applied
to (Figure 6). At training, our model receives two inputs: a
clean view x′ processed by the encoder E , and a noisy view
xt denoised by the decoder D(xt|x′), aiming to recover
x = x0. With the exception of native multi-view datasets
(e.g. ShapeNet), we create the source and target views
x′ and xt by applying random data augmentations at each
training step on the original image x (from the dataset).

We test the impact of applying augmentations either just
to the source view, just to the target view, to both, or to none
of them. We observe that augmenting the source is more
critical than the target in terms of its influence on down-
stream classification performance, and that the model still
achieves 55.1 when the source and the target views remain
equal. Moreover, we find it valuable to add low Gaussian
noise to the source views read by the encoder, yielding 1.3%
improvement in ImageNet classification accuracy and im-
proving LPIPS scores relatively by 33%.

G.3. Pose Conditioning

We compare different encoding schemes of the camera per-
spectives for the 3D novel view synthesis task (Table 8).
Given a camera pose p, we can use a closed-form calcula-
tion to derive a 2D grid of rays r = (o,d) of dimension
H×W×6 with origins o and directions d. We can then
represent each ray through concatenation: [o,d] (concat),
as commonly done in prior works [60, 80], or instead, ex-
press them with a parametric sum: o + sd·d, where sd is



Table 9. Ablations on ShapeNet, varying the classifier-free guid-
ance settings: either masking the latent z that encodes the source
image view, masking the pose information r of the source and tar-
get views, or independently masking both.

Masking PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
ShapeNet
Latent 27.42 0.947 0.74 0.039
Pose 27.16 0.940 0.96 0.041
Latnet + Pose 27.11 0.938 0.95 0.041
GSO
Latent 24.12 0.937 2.22 0.065
Pose 24.25 0.939 2.48 0.062
Latnet + Pose 24.97 0.945 1.51 0.054

a scaling factor that can be chosen in different ways: either
normalizing d to a length of 1, casting it onto the image
plane, or, as we propose, on a sphere that centers at the ob-
ject, i.e. the origin (Normalized, Plane and Sphere). We
can further describe the rays either using Polar or Cartesian
coordinates, embedded with sinusoidal positional encoding
[68] as explained above (Appendix C). We compare these
alternatives, and find that casting the rays on a sphere per-
forms most effectively, and that for this case, Polar coordi-
nates outperform the Cartesian ones.

We further experiment with representing the camera pose
as a single vector p that captures its position and direction
in Polar coordinates, either considering pt−ps, the relative
camera transformation from the source to the target, or con-
catenating the two absolute viewpoints [ps,pt]. We then
encode the information with sinusoidal positional encoding
[68]), and use the resulting vector to guide the denoiser’s
operation through feature modulation, similarly to the latent
z. However, the ablations show that integrating the camera
perspective by concatenating a 2D grid of rays surpasses
both the modulation-based pose conditioning as well as a
hybrid alternative that simultaneously uses both techniques.

Finally, we experiment with different masking tech-
niques as part of the classifier-free guidance (Section 3.3),
either randomly masking the latent representation z that en-
codes the source image view, masking the pose informa-
tion (namely, the rays 2D grid r), or independently masking
both. We interestingly note that the ideal masking vary for
different datasets: while masking of both the latent and pose
improves performance for the real-world Google Scanned
Objects, it reduces the performance for ShapeNet. Qualita-
tively, masking both the pose r and the latent z enhances
the model’s generative flexibility, allowing it to synthesize
either novel objects at requested camera perspectives, or ar-
bitrary novel views even at the absence of source or target’s
pose information (supplementary figures will be added very
soon).

G.4. Sampling Configuration

We vary the guidance strength g and timesteps striding l (i.e.
number of timesteps used at sampling) and analyze their im-

pact on the generated images’ quality along different met-
rics (Figure 9). The model is robust to variation in both
settings, with optimal values commonly achieved at g = 2
and l = 150 (considering different metrics and datasets).
Classifier-free guidance consistently yields higher-quality
images than unguided sampling, while too strong guidance
(like ≥5) results in a slight reduction in scores and potential
visual artifacts.

As per the number of sampling steps, while PSNR and
LPIPS scores tend to remain constant, we interestingly ob-
serve an inverse correlation between the process length’s
influence on FID vs. SSIM, the former reflecting sharpness
and fidelity while the latter capturing similarity to the target:
Sampling images over more steps tends to improve their re-
alism, but may simultaneously induce subtle variations, as
the samples begin to slightly move away from the mean es-
timated target. As aforementioned, we find that l = 150
offers a favorable balance between these two qualities.


	. Introduction
	. Related Work
	. Approach
	. Model Overview
	. The Encoder
	Layer Modulation & Masking

	. Novel View Generation
	. Training & Sampling

	. Experiments
	. Linear-Probe Classification
	. Visual Synthesis
	Image Reconstruction
	Novel View Generation

	. Disentanglement & Controllability
	Qualitative Evaluation
	Quantitative Evaluation


	. Conclusion
	. Overview
	. Model Overview & Diffusion Preliminaries
	. Implementation Details
	. Datasets, Preprocessing & Augmentations
	. Datasets Overview
	. Data Preprocessing
	. Data Augmentation

	. Evaluation & Metrics
	. Linear Probing
	. Image synthesis
	. Disentanglement

	. Baselines
	. Task-Agnostic Baselines
	. Linear-Probe Classification
	. Image Reconstruction
	. Novel View Synthesis
	. Disentanglement

	. Ablation Studies
	. Feature Modulation
	. Data Augmentation
	. Pose Conditioning
	. Sampling Configuration


