
A noisy elephant in the room: Is your out-of-distribution
detector robust to label noise?

Supplementary Material

In these supplementary materials we describe our exper-
imental set-up in more detail (Section 1), along with the
OOD detection methods and their hyper-parameters (Sec-
tion 2). In Section 3, we present additional figures and re-
sults supporting the analysis in the main text.

1. Experimental set-up

1.1. Implementation details

Software Our implementation builds on the
OpenOOD [40, 43] codebase, which provides a uni-
fied training and evaluation framework for state-of-the-art
OOD detection methods. Our main changes:
• expanded the selection of classification datasets to com-

pare the clean vs. real label noise vs. synthetic label noise
settings (see Section 1.2)

• modified the selection of OOD datasets (Section 1.3)
• added the MLPMixer [35] and CompactTransformer [12]

architectures (Section 1.4)
• added support for different checkpointing strategies (Sec-

tion 1.4)
• modified some of the OOD detection methods’ imple-

mentation to better match their official implementation
(Section 2)

Compute We ran our experiments on a desktop (GTX TI-
TAN X) and on a GPU cluster (T4, A40, V100, A100).

Reproducibility We will make our code publicly
available at https://github.com/glhr/ood-
labelnoise, including data splits, synthetic noisy labels,
and scripts to reproduce all figures and results.

1.2. ID datasets
Overview The image classification datasets to be used for
training were selected based on the availability of both clean
and real noisy label sets: 3 CIFAR variants [21] and Cloth-
ing1M [39]. We also considered including datasets from the
controlled real-world label noise benchmark in [19], how-
ever many of the image URLs are no longer accessible.

CIFAR10 and CIFAR100 are widely used in OOD de-
tection benchmarks and hardly need an introduction. They
consist of natural images selected from image search engine
results where the object of interest is prominent in the image
and clearly identifiable - labelling was performed by stu-
dents and verified by the authors [21]. CIFAR100-Coarse
(as named in [38]) contains the same set of images as CI-
FAR100, but has a coarser class definition, with each super-
class encompassing 5 fine-grained classes from CIFAR100.
[38] provides crowd-sourced (unreliable) re-annotations of
these three datasets, resulting in several noisy label sets.

Clothing1M is widely used in the label noise research
bubble [1]. It consists of product images crawled from on-
line shopping websites - with keywords in the surrounding
text used to automatically assign a clothing category label.
While the full noisy dataset contains over a million images,
we only consider the sub-set of images which was also man-
ually annotated by the authors, providing a corresponding
clean label for every noisy label (72,409 images). Since
Clothing1M includes images of variable height, they are re-
sized to 224x224 for training and evaluation.

We show samples from these datasets in Figure 4, in-
cluding the list of classes.

Train/val/test splits The validation set is used for early
stopping and OOD detection hyper-parameter tuning (for
methods that need it); the test set is only used for evaluation
(both classification performance and OOD detection perfor-
mance). Note that the only difference between the clean and
label noise setting lies in the training labels - the validation
and test labels are clean in both settings.

For the CIFAR datasets, we keep the same splits as in the
OpenOOD benchmark [43]. For Clothing1M, we apply the
official splits provided for the clean subset [39].

Noisy labels In Figure 1 we show some examples of in-
correctly labeled images - the noisy labels are often quite
reasonable guesses given the ambiguity of the images.

(a) Clothing1M-Noisy [39] (b) CIFAR-10-Worst-N [38] (c) CIFAR-100-Fine-N [38]

Figure 1. Examples of incorrectly labelled images from some of the real noisy training datasets.

1

https://github.com/glhr/ood-labelnoise
https://github.com/glhr/ood-labelnoise


In Figure 2 we visualize the noise transition matrix for
each real noisy training set. Note that Clothing1M is the
only ID dataset with class imbalance in the clean labels.
Synthetic label noise We describe the procedure for gen-
erating the 2 types of synthetic labels below. Given a set
of clean and corresponding real noisy labels, the idea is to
create a set of synthetic labels with the same noise rate but
following a different noise model.

Synthetic Uniform noise (SU) labels:
given N , the number of samples to mislabel
1. Select N samples from the training set randomly - these

are the samples whose label we’ll flip
2. For each selected sample, check its clean label, and ran-

domly assign it one of the other classes with equal prob-
ability.

In Figure 3 we visualize the noise transition matrix for each
SU training set.
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Figure 2. Confusion matrices (showing number of samples) for
the real noisy (N) training label sets. Diagonal entries indicate
the number of correctly labelled images for each class.

Synthetic Class-conditional noise (SCC) labels:
given the matrix indexed as Mtf indicating the number of
samples with clean label t and noisy label f
1. For each class c, count the number of samples to misla-

bel: Nc→ =
∑

f ̸=c Mcf

2. Select a set Sc→ of Nc→ samples with clean label c from
the training set randomly - these are the samples whose
label we’ll flip

3. For each of the other classes (e.g. b)
• check how many samples should be flipped to that

class Nc→b = Mcb

• select Nc→b samples from Sc→ randomly and flip
them to class b

• Repeat for all classes ̸= c
4. Repeat the process for the rest of the classes

Note that the noise transition matrices for SCC datasets are
identical to the corresponding real noisy label sets (Fig-
ure 2) and thus are not shown here.
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Figure 3. Confusion matrices (showing number of samples) for
the synthetic uniform noise (SU) training label sets.
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(a) Clothing1M [39]
14 classes: T-Shirt, Shirt, Knitwear, Chiffon, Sweater, Hoodie, Windbreaker, Jacket, Downcoat, Suit, Shawl, Dress, Vest, Underwear

(b) CIFAR10 [21]
10 classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks

(c) CIFAR100 [21]
20 classes for CIFAR100-Coarse [38]: aquatic mammals, fish, flowers, food containers, fruit and vegetables, household electrical device, household furniture, insects, large carnivores, large man-made outdoor things, large natural outdoor scenes,
large omnivores and herbivores, medium-sized mammals, non-insect invertebrates, people, reptiles, small mammals, trees, transportation vehicles, other vehicles
100 classes for CIFAR100-Fine [21]: apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl, boy, bridge, bus, butterfly, camel, can, castle, caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach, couch, crab, crocodile,
cup, dinosaur, dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, computer keyboard, lamp, lawn mower, leopard, lion, lizard, lobster, man, maple tree, motorcycle, mountain, mouse, mushroom, oak tree, orange, orchid, otter,
palm tree, pear, pickup truck, pine tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon, ray, road, rocket, rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snake, spider, squirrel, streetcar, sunflower, sweet pepper, table, tank, telephone,
television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale, willow tree, wolf, woman, worm

Figure 4. Preview of the ID datasets - with 60 randomly selected training samples shown per dataset.

(a) MNIST [8] (OOD test)

(b) SVHN [27] (OOD test)

(c) Textures [5] (OOD test)

(d) EuroSAT [15] (OOD test)

(e) Food-101 [4] (OOD test)

(f) Stanford Online Products [30] (OOD test)

(g) ImageNet sub-set (OOD test)

(h) ImageNet sub-set (OOD val)

Figure 5. Preview of the OOD test and validation sets - with 60 randomly selected samples shown per dataset.
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1.3. OOD datasets

Figure 5 shows samples from each OOD dataset. Our
selection of OOD datasets differs from that of the CIFAR-
10 and CIFAR-100 benchmarks from OpenOOD [43], since
we wanted to minimize the possibility of semantic over-
lap with any of the ID datasets. We did not include
Places365 [44] as it prominently features people, overlap-
ping with Clothing1M and CIFAR100. Instead, we include
Food101 [4], EuroSAT [15], and selected classes1 from
Stanford Online Products [30] - these three datasets pro-
vide additional semantic and appearance diversity from dif-
ferent domains. We kept MNIST [8], SVHN [27], Tex-
ture [5] as they significantly differ from the ID datasets
both semantically and appearance-wise. We also include
12 classes from TinyImagenet [22]/ImageNet [7] - which
we manually selected to be person-free and not overlap with
the ID datasets. 6 of those classes2 are randomly selected as
OOD validation set (only used for hyper-parameter tuning)
- and the rest3 are used as an OOD test set - alongside the 6
other OOD datasets.

1.4. Training classifiers
Architectures and hyper-parameters We selected 3
classifier architectures with two main objectives in mind:
including several families of neural networks, and keeping
the experiments feasible in terms of time and compute.

• The ResNet18 [14] model implementation and train-
ing hyper-parameters are fully based on the OpenOOD
benchmark, with the 32x32 variant used for CIFAR
datasets and 224x224 for Clothing1M. We used the
same training hyper-parameters for all datasets.

• The Compact Transformer [12] model implementation
and training hyper-parameters are based on the official
repository [13]. We use the cct_7_3x1_32 variant for
CIFAR datasets, and cct_7_7x2_224 for Clothing1M.
We train the models with AdamW optimization and co-
sine annealing - learning rates 5.5e-4 for CIFAR10, 6e-4
for CIFAR100, and 5e-4 for Clothing1M (based on the
hyper-parameters in the official repository).

• The MLPMixer [35] model implementation and train-
ing hyper-parameters are based on a third-party
repository[41]. For the CIFAR datasets, a patch size of
4, network depth of 6 and feature dimensionality of 512
are used; for Clothing1M, a patch size of 16, and depth of
8. Models are trained via Adam optimization with learn-
ing rate 1e-3 and cosine annealing.

1stapler, toaster, coffee maker, cabinet, fan, kettle
2magnetic compass, lighthouse, water tower, trilobite, obelisk, pen-

guin, crane, altar, brass, acorn, teddy bear, pill bottle
3crane, pill bottle, magnetic compass, obelisk, altar, trilobite

Following the OpenOOD training pipeline, besides normal-
ization and standard data augmentation, no advanced train-
ing techniques were applied.

Label noise setting Models trained on noisy labels (real
or synthetic) are trained with the same images, hyper-
parameters and procedure as their cleanly trained counter-
part. Thus, the only difference lies in the training labels
used to compute the loss for training.

Early stopping We monitor validation accuracy (using
clean validation labels) every epoch, and save two check-
points during training:
1. early - epoch which gave the top-1 validation accuracy.
2. last - last epoch (we set a pre-defined number of epochs

for each architecture which is based on the number of
ecochs in their respective implementations and ensures
convergence - 100 epochs for ResNet18, 300 epochs for
Compact Transformer and 500 epochs for MLPMixer).

1.5. Evaluation

Classification performance At test-time, a model is first
evaluated on its ID test set Dtest (e.g. CIFAR10 test for
a classifier trained on CIFAR10 images) in terms of clas-
sification accuracy. We denote the set of ID test images
which are correctly classified as Dcorrect, and the others as
Dincorrect.

OOD detection performance Next, each of the 20 OOD
detection methods is applied to the classifier (with some
methods requiring a set-up step to collect ID data statistics,
and others requiring a hyperparameter tuning step using val-
idation ID and OOD samples - see details in Section 2).
OOD detector scores are then extracted for all samples in
Dtest, as well as all samples in each of the 7 OOD test
datasets. Note that no samples from Dtest or from the OOD
test sets are “seen” by the classifier or OOD detector before
evaluation. For each OOD test dataset (e.g. DMNIST ), we
measure:
• AUROCID vs. OOD - where Dtest samples are considered

positive and DMNIST are considered negative
• AUROCcorrect vs. OOD - where Dcorrect samples are posi-

tive and DMNIST samples are negative (Dincorrect sam-
ples are excluded from the calculation)

• AUROCincorrect vs. OOD - where Dincorrect samples are
positive and DMNIST samples are negative (Dcorrect

samples are excluded from the calculation)
OOD detection performance is aggregated across the 7
OOD test datasets when reporting results - we report the
median AUROC in the main text as it is less sensitive to
outliers than the mean. For completeness, we also include
results for mean AUROC (Section 3.1 below).
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Lastly, in this supplementary we also report the
AUROCcorrect vs. incorrect - that is, the OOD detectors’ abil-
ity to flag misclassifications among ID samples (known as
failure detection in the literature [3]). Note that AUROC
is not sensitive to the number/ratio of positive vs. negative
samples, as the ROC curve plots the True Positive rate vs.
False Positive rate.

1.6. Statistical testing

When comparing pairs of methods (e.g. MSP vs. ODIN) or
settings (clean vs. noisy training labels), we apply the Al-
most Stochastic Order (ASO) test [6, 10] as implemented
by Ulmer et al. [36] with the deepsig Python pack-
age: https://github.com/Kaleidophon/deep-
significance.

ASO is a statistical significance test which enables pair-
wise comparison of two sets of scores - one produced by
model/method/setting A, and the other by model/method-
/setting B (the baseline). It compares their empirical distri-
butions and determines whether A can be declared stochas-
tically dominant over B by comparing the empirical cumu-
lative distribution functions of the two sets of scores. It
is well suited for deep learning research, since it does not
make any assumptions about the distribution of a set of
scores.

The ASO test is parametrized by a threshold α - the sig-
nificance level that the p-value has to fall below (we use
α = 0.05). It outputs a value ϵmin (ranging from 0 to 1)
corresponding to the (expected upper bound to the) viola-
tion ratio. If ϵmin[A>B] < 0.5, then A can be considered
stochastically dominant over B (A’s scores are bigger than
B’s more often than not). The lower ϵmin[A>B], the more
confident we can be that A is superior. If ϵmin[A>B] ≥ 0.5,
we cannot consider A superior to B. In that case, only by
testing ϵmin[B>A] can we say whether B is superior to A.
If ϵmin[A>B] ≥ 0.5 and ϵmin[B>A] ≥ 0.5, neither A nor
B can be considered superior to the other. We refer to [36]
for additional details about ASO and its implementation.

In our case, the scores correspond to AUROC perfor-
mance for different runs (e.g. across multiple random seeds
and checkpointing strategies).

2. OOD detection methods

How were the methods chosen? Our selection of OOD
detection methods includes all post-hoc methods from the
OpenOOD v1.5 benchmark [43], excluding OpenGAN [20]
as it requires training a secondary network (too compu-
tationally demanding considering the scale of our experi-
ments), but including GEN [26] which was recently added
to the OpenOOD codebase but is not mentioned in the
OpenOOD papers.

Configuration and hyper-parameters Table 1 gives an
overview of the 20 methods. Many methods first involve
a set-up step where one or more parameters are adjusted
based on training or validation ID data. Some methods are
also governed by hyper-parameters, which are tuned based
on OOD detection performance on validation data.

In most cases, we follow the OpenOOD implementa-
tion/settings for each method, and refer to the OpenOOD
paper and codebase for details. For some methods, we mod-
ified their implementation or configuration, or expanded
their set of hyper-parameters (bold in Table 1). We describe
these modifications below.
• ODIN [24] - we extended the range of possible values

for the perturbation magnitude to align with the original
paper and implementation.

• ASH [9] - the original paper proposes two competitive
variants: ASH-s and ASH-b, and OpenOOD implements
ASH-b by default. We included both in our preliminary
experiments and found ASH-s to perform significantly
better than ASH-b (both in a clean and noisy label set-
ting), and thus only report results for ASH-s.

• REACT [33] and DICE [32] - we extended the range of
possible values for the percentile parameter based on re-
sults in the original papers.

• MDSEnsemble [23] - the OpenOOD implementation only
extracts features from the first layer - we instead ex-
tract features after every layer, following the original pa-
per. We did not apply any input perturbation because we
wanted to isolate the effect of ensembling (for compar-
ison with MDS), and because it would require a hyper-
parameter tuning step to tune the perturbation magnitude
(time- and compute-hungry).

• GRAM [29], the OpenOOD implementation gave sup-
bar results - we therefore re-implemented it following
the official implementation, and extract features after ev-
ery layer similarly to MDSEnsemble. Furthermore, when
computing class-wise statistics in the setup it is assumed
that there is at least one prediction per class - however, in
the label noise setting we found a few corner cases where
a class has no prediction in the training set. In those cases,
we select samples for that class based on class labels.

• OpenMax [2] - we added a fallback for when a class has
no corresponding predictions, similarly to GRAM.

• SHE [42] - in the setup it is assumed that there is at least
one correct prediction per class (to obtain a mean acti-
vation per class), which again, sometimes is not the case
for a class. When this corner case happens, we instead
consider samples which are either predicted or labelled
as that class.
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methods
set-up using

ID data?
hyper-parameters

(tuned to maximize AUROC btw. ID val set and OOD val set) configuration details

ODIN [24]
temperature in {1, 10, 100, 1000}
perturbation magnitude in {0,0.00035,0.0007,0.0014,0.0028}

GEN [26]
gamma in {0.01, 0.1, 0.5, 1, 2, 5, 10}
M in {10, 50, 100, 200, 500, 1000}

ASH [9] percentile in {65, 70, 75, 80, 85, 90, 95} ASH-s variant
EBO [25] temperature in {1, 10, 100, 1000}
REACT [33] ✓ percentile in {80,85,90,95,99}
DICE [32] ✓ percentile in {10,30,50,70,90}
KNN [34] ✓ K in {50, 100, 200, 500, 1000}
MDSEnsemble [23] ✓ every layer, no input perturbation, weight of 1 for all layers
GRAM [29] ✓ every layer, powers in range [1,10], weight of 1 for all layers
OpenMax [2] ✓ Euclidean distance, Weibull tail size of 20, alpha rank of 3
SHE [42] ✓ inner product as distance function
RMDS [28] ✓
KLM [17] ✓
MDS [23] ✓
VIM [37] ✓
TempScaling [11] ✓
GradNorm [18]
RankFeat [31]
MLS [17]
MSP [16]

Table 1. Implementation and configuration details for each OOD detection method. Entries in bold indicate that we modified it compared to the OpenOOD implementation.



3. Analysis

Here we delve into the results, following a similar outline
and sub-section titles as in the main text, for easy cross-
referencing.

3.1. Where there’s noise there’s trouble

Performance on each OOD dataset In the main text,
we aggregate OOD performance across the 7 OOD test
datasets; Figure 6 shows the effect of noisy vs. clean clas-
sifier labels for each individual OOD dataset. Across the
board, ImageNet6test and Stanford Online Products are the
most challenging OOD datasets, while EuroSAT, SVHN
and MNIST tend to be easier.

Methods with the strongest potential in a label noise
setting (GRAM, KNN, MDS, MDSEnsemble and VIM)
are nevertheless sensitive to the characteristics of the OOD
dataset - the spread in performance across OOD datasets is
especially large for GRAM and MDSEnsemble which op-
erate at multiple network depths.

We also note that the drop in OOD detection perfor-

mance caused by the introduction of label noise tends to be
more pronounced for OOD datasets with the highest clean
performance - in other words, label noise reduces the per-
formance gap between OOD datasets of varying difficulty.

Aggregating performance across OOD datasets For al-
most all methods, aggregating OOD detection performance
by taking the mean vs. median AUROC across OOD
datasets gives comparable results (ϵmin[mean>median] >
0.5 and ϵmin[median>mean] > 0.5) - the excep-
tion being MDSEnsemble, for which the median AU-
ROC is consistently larger than the mean AUROC
(ϵmin[median>mean] = 0.15). This is also reflected in
the best-case performance reported in Table 2, where MD-
SEnsemble ranks significantly lower than in Table 2 from
the main text, and in Figure 6 where its strong performance
is limited to far OOD datasets. However, in terms of best-
case performance (Table 2) it remains the strongest method
for classifiers trained on Clothing1M images.

In the following sections, we continue to report the me-
dian AUROC in the rest of the supplementary, aligning with
the main text.
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Figure 6. OOD detection performance across different OOD datasets and training label types. Clean: reliable labels, N: real noisy labels,
SCC and SU: synthetic noisy labels. Boxplots show the distribution across models/checkpoints.



training
labels

CIFAR10 CIFAR100-Coarse CIFAR100-Fine Clothing1MAgg Rand1 Worst
method clean N SCC SU N SCC SU N SCC SU clean N SCC SU clean N SCC SU clean N SCC SU

MDS 94.08 88.7 88.2 89.85 89.14 88.87 87.43 87.07 87.17 87.44 82.28 76.19 79.01 78.06 76.28 74.04 73.51 71.86 84.99 87.61 87.9 88.99
VIM 93.84 88.85 87.87 89.48 88.69 88.66 86.42 86.52 86.62 86.93 83.32 75.74 78.23 76.76 81.49 73.21 73.83 71.59 86.82 82.84 88.01 84.98
KNN 93.29 89.11 89.13 88.92 87.26 86.78 86.22 85.11 84.88 85.03 82.81 74.16 77.41 73.96 82.78 76.55 73.84 69.19 84.45 84.78 87.91 83.37
GRAM 91.19 84.97 83.16 83.12 81.86 82.12 82.31 80.27 81.4 80.41 80.83 74.17 74.44 73.6 83.8 77.77 76.68 75.93 87.63 82.69 86.45 86.32
RMDS 92.28 88.19 88.85 88.22 87.88 85.64 86.85 84.52 81.5 82.23 81.43 75.51 76.39 74.14 82.06 76 76.67 72.56 73.79 70.84 79.18 71.82
DICE 90.03 83.15 81.77 84.34 87.74 80.91 84.61 83.45 76.58 78.45 82.48 73.56 74.74 70.41 80.83 73.57 72.95 70.74 85.64 79.64 84.09 86.05
EBO 90.94 85.73 84.87 82.22 88 82.41 77.65 85.88 82.38 80.92 82.08 74.95 72.95 68.51 80.47 74.19 72.61 67.09 86.41 79.64 86.05 71.52
GEN 91.05 85.43 84.55 82.62 87.84 82.83 82.02 85.84 81.23 81.59 81.7 75.04 72.06 70.09 80.35 73.53 73.98 67.74 82.48 75.32 82.81 70.63
ODIN 90.97 86.7 85.59 82.87 87.52 82.61 82 85.21 81.95 81.17 80.43 74.43 71.16 69.41 82.62 74.23 72.5 67.4 82.89 75.51 80.07 70.44
ReAct 90.29 86.02 85.17 82.49 87.63 82.99 80.61 85.66 79 79.61 82.25 75.14 73.11 71.04 82.87 75.18 74.17 66.15 82.38 73.44 80.81 71.66
SHE 89.79 85.93 84.68 85.15 86.46 83.49 83.08 83.41 81.16 80.87 80.45 71.44 75.23 69.06 77.69 69.53 68.7 67.84 85.65 79.79 81.31 75.38
MLS 90.85 85.64 84.75 82.16 87.17 82.9 78.85 85.21 82.05 81.07 81.92 74.85 71.83 69.07 80.41 74.03 72.5 67.63 81.94 74.54 80.08 70.2
MDSEns 92.42 84.48 80.9 80.53 79.21 80.2 79.04 77.21 79.04 79.7 71.52 66.99 65.56 65.89 77.94 71.01 70.33 69.73 91.34 91.26 91.52 91.57
TempScale 90.83 85.13 84.22 82.34 84.54 79.19 79.97 83.73 80.44 81.07 80.59 72.97 70.3 69.14 79.6 73 69.21 67.25 78.49 69.75 86.15 70.71
ASH 88.02 84.31 82.86 80.5 82.14 74.98 74.81 80.62 76.43 76.38 81.98 72.86 73.42 65.69 82.12 75.31 72.3 67.61 82.22 77.4 79.53 75.22
MSP 90.62 84.76 84.12 82.45 84.59 81.99 82 83.13 79.72 81.03 79.93 71.49 68.95 69.01 78.73 71.11 68.65 67.49 76.42 66.75 74.26 70.72
OpenMax 89.79 85.77 83.02 82.87 82.88 82.04 78.65 79.95 75.42 78.41 80.88 74.75 72.5 69.69 80.1 74.67 74.19 68.89 70.28 67.94 75.15 69.53
KLM 90.63 82.52 82.41 82.67 80.23 80.89 82.26 76.9 77.47 77.32 78.99 71.22 69.52 67.97 79.13 72.1 70.75 66.69 75.75 66.65 65.45 66.54
GradNorm 85.5 78.96 77.03 76.46 81.92 79.79 78.08 79.1 75.1 74.81 68.4 67.05 69.42 66.22 71.05 64.9 66.97 62.77 82.81 77.01 77.99 72.54
RankFeat 81.41 77.82 78.65 72.14 77.1 74.92 75.72 81.36 75.86 74.64 74.88 64.79 68.15 64.76 68.32 70.27 66.97 65.93 71.63 73.57 72.35 69.04

Table 2. Best-case OOD detection performance (AUROCID vs. OOD in % when taking the mean AUROC across OOD datasets, as opposed
to the median in the main text) per method (that is, after selecting the best architecture-seed-checkpoint combination for each training label
set). N, SCC, and SU refer to the real and synthetic noisy label sets described in in the main text. The top-3 for each training dataset are
highlighted in bold, and the top-1 is underlined. In red are scores < 75% and in orange scores between 75 and 80%. Rows are sorted based
on the total performance across columns.

3.2. Does accuracy tell the whole story?

Relation between OOD detection performance and ac-
curacy Figure 7 summarizes the relation between OOD
performance metrics and classification accuracy in terms
of Spearman correlation. As mentioned in the main text,
the correlation does not hold when only considering incor-
rectly classified ID samples, which the majority of meth-
ods are not capable of distinguishing from OOD sam-
ples regardless of the underlying classifier. The gap be-
tween AUROCcorrect vs. OOD and AUROCincorrect vs. OOD for
each method is shown in Figure 10 (next section).

In Figure 8 we visualize the OOD detection performance
of individual models as a function of ID classification ac-
curacy, separately considering AUROCcorrect vs. OOD perfor-
mance (left) vs. AUROCincorrect vs. OOD (right), and color-
coding points according to different parameters of interest.

For instance, Figure 8c shows the role of the classifier’s
architecture. Methods taking logits or Softmax probabili-
ties as input are not visibly affected by the choice of archi-
tecture. GRAM, MDS and MDSEnsemble’s performance
is clearly architecture-dependent. Notably, MDSEnsemble
and RankFeat’s AUROCcorrect vs. OOD performance drops be-
low 0.5 (worse than a random detector) when using a Com-
pactTransformer architecture (CCT). Looking at Figure 8b,
we note that TempScale applied on a classifier trained with
synthetic noisy labels can give unexpectedly poor results,
even at low noise rates (Figure 8a).

Looking at the spread of AUROCcorrect vs. OOD perfor-
mance in Figure 8c, it appears that even for methods with
the highest correlation, OOD detection performance be-
comes less predictable as classification accuracy decreases.
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Figure 7. Spearman correlation between ID classification and OOD detection performance across methods. Each model/checkpoint
contributes a single point (396 points per method).
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Figure 8. Exploring the relationship between OOD detection performance and ID classification performance (accuracy). Here we distin-
guish between the OOD detectors’ ability to separate correctly classified ID samples with OOD samples (left) and incorrectly classified ID
samples with OOD samples (right). Each point represents a single model/checkpoint (396 points per method).



Would your OOD detectors be better off as a failure de-
tector? In the main text we raise this question in passing,
and do not elaborate on failure detection performance due to
lack of space. Here, we delve deeper and show supporting
results.

Performing pair-wise statistical comparisons between
failure detection performance (AUROCcorrect vs. incorrect) and
OOD detection performance (AUROCID vs. OOD) across all
models/checkpoints for each method (Figure 9), we find:
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Figure 9. Almost Stochastic Order (ASO) [6, 10, 36] pairwise
comparisons between failure detection and OOD detection perfor-
mance for each method. The smaller ϵmin[A>B], the more confi-
dent we can be that setting A is better than setting B.

• MSP, GradNorm, GEN, RMDS, ASH, MLS, OpenMax,
SHE, ODIN, EBO, REACT, KLM are all consistently
better failure detectors than OOD detectors (ϵmin[failure
detection>OOD detection] < 10−2)

• the same holds for TempScaling, Rankfeat, DICE
and KNN, although less consistently (ϵmin[failure
detection>OOD detection] < 0.2)

• VIM is the only method which cannot be considered
better at one or the other (ϵmin[failure detection>OOD
detection] = 0.86 and ϵmin[OOD detection>failure
detection] = 0.65)

• GRAM, MDS, and MDSEnsemble are the only meth-
ods which are better OOD detectors than failure detectors
(ϵmin[OOD detection>failure detection] < 0.13)

Figure 10 provides a visual comparison of these 2 met-
rics (red and green boxplots) in the clean and label noise
setting. For most methods, the gap between failure detec-
tion and OOD detection performance is clear even in a clean
label setting, and widens with the introduction of label noise
in the classifier’s training data.

TLDR; indeed, many state-of-the-art post-hoc OOD de-
tectors would be better off as failure detectors.
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Figure 10. Comparing the performance of OOD detectors across different AUROC-based evaluation metrics in the clean vs. label noise
setting. AUROCcorrect vs. incorrect (in red) is a failure detection metric - it only considers ID samples. The rest are OOD detection metrics.
Boxplots show the distribution across all models/checkpoints.



It’s not just about the noise rate Figure 6 (presented ear-
lier) breaks down the effect of noise type per method and
per OOD dataset, allowing for a fine-grained visual com-
parison. Figure 11 gives a more concise overview, showing
a clear trend across methods that synthetic labels are more
detrimental than real noisy labels despite having the same
noise rate. GRAM and MDSEnsemble, the two ensemble-
based methods are the least sensitive to the noise model.

Figure 12 looks at the effect of label noise in terms of how
ID and OOD scores are distributed (similarly Figure 5 in the
main text). Note that the images used to compute scores are
the same across histograms, only the underlying classifier’s
training labels differ. Separability between ID and OOD
samples clearly degrades with increasing label noise. These
examples also show that for a given noise rate, the distri-
bution of label noise across samples and classes affects the
magnitude (x-axis) and spread of ID and OOD scores.
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Figure 11. OOD detection performance for different types of labels used to train the underlying classifier. Clean: reliable labels, N: real
noisy labels, SCC and SU: synthetic noisy labels.
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Figure 12. Histogram of OOD detector scores for ID samples from the CIFAR10 test set (blue) and OOD samples from ImageNet6test. We
consider different OOD detectors placed on top of a ResNet18 classifier (early checkpoint) trained with different sets of labels (indicated
on top of the histograms). Note that x axis limits are adjusted for each histograms.



Picking a model checkpoint Figure 13 compares perfor-
mance when using clean validation set or the noisy training
set for set-up/tuning.
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Figure 13. OOD detection performance when using clean vali-
dation labels (dashed line) vs. potentially noisy labels from the
training set (solid line) for set-up. In the ”clean” setting, both sets
of labels are reliable, and differ in terms of size/amount but not
quality.
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