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Overview
The appendix presents more dataset details, experimen-

tal results, settings, and analyses as follows:
Appendix A More details about multimodal datasets.
Appendix B More results on different architectures.
Appendix C More implementation details.
Appendix D More ablation studies.
Appendix E Training computation overhead analysis

Appendix A: More details about multimodal datasets
We follow [1, 6, 11] and conduct experiments on four

multimodal datasets: (1) CREMA-D [3] is an audio-visual
dataset for speech emotion recognition, which contains fa-
cial and vocal emotional expressions. The emotions has 6
categorizations: angry, happy, sad, neutral, discarding, and
fear. The whole dataset consists of 7,442 video clips, di-
vided into 6698 samples as a training set and 744 samples
as a testing set. (2) AVE [13] is an audio-visual dataset for
audio-visual event localization, in which there are 28 event
classes and consists of 4,143 10-second video clips. Follow-
ing [6, 11], we construct a labeled multimodal dataset by
extracting the frames from event-localized video segments
and capturing the audio clips within the same segments. The
training, validation, and testing splits of the dataset follow
[13]. (3) VGGsound [4] is a large-scale video dataset con-
taining 309 classes covering a wide range of audio events in
everyday life. All videos are captured from YouTube with
audio-visual correspondence, and the source of the sound is
visually evident. The duration of each video is 10 seconds,
and the dataset partition is the same as in [4]. We randomly
choose 50 class to conduct experiments. (4) CrisisMMD
[2] is a multimodal crisis prediction dataset. It consists
of 8079 aligned images and associated texts, where images
and texts are collected from Twitter. The corpus is divided
into eight humanitarian categories, including infrastructure
and utility damage, vehicle damage, rescue, volunteering,
or donation effort, injured or dead people, affected individ-
uals, missing or found people, other relevant information,
and not relevant or can’t judge, with defaulted dataset splits.
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Appendix B: More results on different architectures
Besides the results in Tables 3 & 4 in the main body,

we conduct more experiments to further demonstrate the
effectiveness of our method across diverse-capacities ho-
mogeneous and heterogeneous architectures. We compare
C2KD with vanilla KD [8], the state-of-the-art feature-
based KD (Review [5]), online KD (SHAKE [9]), logits-
based KD (NKD [14]). The results in Table 1 illus-
trate C2KD can effectively transfer crossmodal knowl-
edge across diverse-capacities homogeneous architectures
(i.e., ResNet-18-ResNet-50) and heterogeneous architec-
tures (i.e., BERT-ResNet-18 and BERT-ShuffleNet V2).
Appendix C: More implementation details
C.1: Detailed preprocess strategy

We follow [6, 11] and give the detailed preprocess strat-
egy. For audio modality, we change the input channel from
3 to 1 as [4]. Audio data is transformed into a spectro-
gram of size 257×299 for CREMA-D, 257×1,004 for AVE,
and 257×1,004 for VGGsound, respectively, with the win-
dow length of 512 and overlap of 353. For visual modal-
ity, the input channel is adjusted considering input frames
[15]. Concretely, 3 frames are uniformly sampled from VG-
Gsound, and 1 frame is extracted from AVE and CREMA-
D. Standard augmentations are employed, including ran-
dom cropping and flipping.
C.2: More implementations of our method

We initialize weights of the student model and proxies
following [7]. All experiments are conducted with NVIDIA
RTX3090 GPUs on CUDA 11.4 using the PyTorch frame-
work. All results are the average of three different seeds,
which are set to 1, 2, and 3, respectively.
C.3: Detailed implementations of compared methods

We imply traditional unimodal knowledge distillation
with their defaulted settings. Previous logits-based KD
methods can be seamlessly applied to the Cross-Modal
Knowledge Distillation (CMKD) task. Due to the different
spatial dimensions of multimodal inputs, the intermediate
features have different spatial dimensions. Feature-based
KD methods can’t be directly applied to CMKD. To deal
with this issue, we employ the bilinear interpolation opera-
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CREMA-D [3] AVE [13] VGGsound [4] CrisisMMD [2]
Visual

(A→ V)
Audio

(V→ A)
Visual
(A→V)

Audio
(V→A)

Visual
(A→V)

Audio
(V→A)

Image
(T→I)

Text
(I→T)

RN18 RN50 RN18 RN50 RN18 RN50 BERT SNV2
w/o KD 58.1±0.33 57.9±0.19 31.6±0.18 53.7±0.16 38.7±0.16 60.1±0.18 66.7±0.22 68.0±0.12

KD [8] 57.1±0.57 54.1±0.43 32.6±0.62 48.5±0.35 39.0±0.46 57.8±0.51 66.2±0.38 68.4±0.22

Review [5] 59.4±0.52 56.9±0.62 32.0±0.53 51.3±0.57 38.5±0.53 58.7±0.60 - -
SHAKE [9] 60.2±0.36 58.9±0.63 32.5±0.67 48.6±0.46 38.9±0.51 59.9±0.38 68.2±0.23 69.6±0.25

NKD [14] 60.5±0.62 56.9±0.43 33.0±0.36 52.5±0.36 39.2±0.67 59.6±0.54 67.3±0.31 68.6±0.25

Ours 63.1±0.25 62.1±0.37 35.0±0.21 55.3±0.12 41.0±0.22 62.0±0.23 68.9±0.12 70.0±0.09

RN50 RN18 RN50 RN18 RN50 RN18 BERT RN18
w/o KD 59.7±0.20 56.3±0.22 32.7±0.25 52.8±0.11 39.3±0.13 59.4±0.16 66.7±0.22 68.1±0.13

KD [8] 58.2±0.53 54.0±0.36 33.0±0.43 46.9±0.42 38.9±0.52 56.4±0.61 66.2±0.42 68.5±0.21

Review [5] 60.4±0.58 55.9±0.39 32.7±.0.56 51.2±0.61 38.2±0.43 58.1±0.61 - -
SHAKE [9] 60.5±0.53 59.0±0.48 33.4±0.53 47.5±0.43 38.6±0.41 59.8±0.49 68.0±0.19 69.8±0.23

NKD [14] 60.9±0.54 58.4±0.62 33.2±0.47 52.8±0.55 39.5±0.53 59.1±0.46 67.4±0.26 68.6±0.22

Ours 63.5±0.28 61.6±0.23 35.5±0.30 55.1±0.22 41.3±0.28 62.1±0.24 68.8±0.16 70.2±0.16

Table 1. Comparison results on Visual-Audio and Image-Text datasets. The metric is the top-1 accuracy (%). RN18: ResNet-18;
RN50: ResNet-50; SNV2: ShuffleNet V2 [10].

Figure 1. Analysis of λ1, λ2, λ3. We conduct experiments on the
AVE [13] dataset with ResNet-18 as the multimodal backbones.

tor to align the intermediate features of teacher and student.
Besides, BERT has 12 layers while MobileNetV2 has 5 lay-
ers. We don’t conduct feature-based KD on the CrisisMMD
dataset because we can’t choose which layers to be distilled
based on their original implementations.
Appendix D: More ablation studies
D.1: Hyperparameter Analysis

We analyse the λ1, λ2, and λ3 in Equation 6. λ1 and
λ2 represent the weight of bidirectional distillation between
the proxy and student/teacher and λ3 denotes the weight of
teacher proxy and student proxy. We vary one hyperparam-
eter and leave the other unchanged. As shown in Figure 1,
Our method is robust in terms of different hyperparameters.
As our method can effectively transfer corssmodal informa-
tion, the large and small values of λ might hinder the knowl-
edge transfer. Therefore, we adopt {λ1 = λ2 = λ3 = 1} in
all experiments.
D.2: Proxy Analysis

AVE [13] VGGsound [4]
Visual Audio Visual Audio

Method (A→V) (V→A) (A→V) (V→A)
w/o FA 34.4±0.36 53.0±0.22 40.2±0.25 60.6±0.24

w/ CFA 34.7±0.18 55.0±0.20 40.8±0.28 62.0±0.21

Ours 34.7±0.23 54.9±0.16 40.9±0.31 61.9±0.27

Table 2. Analysis of the structure of the proxy. We conduct
experiments on the AVE [13] and VGGsound [4] datasets with
ResNet-18 as the multimodal backbones.

We provide the detailed analysis of the student and
teacher proxies. The proxy consists of the feature adap-
tation layer and the linear classification head, as shown
in Equation 5. The feature adaptation layer follows the
feature-based KD methods [5, 12], consisting of ‘Conv-BN-
ReLU’ block. Specifically, the kernel size of ‘Conv’ is set
to 1×1, and input and output channel dimensions remain
the same. Here, we analyse the structure of the proxy. We
ablate the feature adaptation layer (w/o FA) and employ a
complicated feature adaptation layer (‘Conv-BN-Conv-BN-
ReLU’, i.e., w/ CFA). Table 2 illustrates that without the
feature adaptation layer (w/o FA), the linear classification
head can’t effectively transfer crossmodal information, pos-
sibly due to the degradation of nonlinear ability. However,
the complicated feature adaptation layer does not bring ob-
vious improvement. Therefore, the feature adaptation layer
and linear classification head constitute the proxy.
Appendix E: Training computation overhead analysis

The extra training computation costs of C2KD are two-
fold: student and teacher proxy and (partially) updating
teacher. We measure the training time and GPU memory



V→A KD[8] Review[5] SHAKE[9] NKD[14] Ours† Ours‡

Mem. 7492 8679 7736 7612 7635 11353
Time 55 67 60 53 54 66

A→V KD[8] Review[5] SHAKE[9] NKD[14] Ours† Ours‡

Mem. 9670 10764 9854 9725 9787 11005
Time 56 68 62 55 53 68

Table 3. Analysis of the training computation overhead. We
conduct experiments on the VGGsound [4] datasets with ResNet-
18 as the multimodal backbones. Time: training times for one
epoch in second; Mem.: peak GPU memory usages (MB); Ours‡:
fully updating the teacher model; Ours†: partially finetuning the
top 2 layers.

usages in Table 3. The proxies are lightweight and induce
few costs. Although updating the whole teacher induces ex-
tra training computation costs, we partially tune the teacher
model and also achieve superior performance and competi-
tive training efficiency. Note that in the inference phase, the
inference costs are the same for all distilled student models.
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