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7. Architecture details
This section delves into the architectural nuances of our
framework, providing a more detailed exposition of com-
ponents briefly mentioned in the main paper. These insights
are crucial for a comprehensive understanding of the under-
lying mechanisms of our approach.

7.1. Mask guidance identity embedding
We embed mask guidance into a learnable space before in-
putting it into our network. This approach, inspired by the
ID assignment in AOT [55], generates a guidance embed-
ding E 2 RT⇥Ce⇥H⇥W by mapping embedding vectors
D 2 RN⇥Ce to pixels based on the guidance mask M:

E(x, y) = M(x, y)D. (4)

Here, E(x, y) 2 RT⇥Ce and M(x, y) 2 {0, 1}T⇥N rep-
resent the values at row y and column x in E and M, re-
spectively. In our experiment, we set N = 10, but it can be
any larger number without affecting the architecture signif-
icantly.

7.2. Feature extractor
In our experiments, we employ ResNet-29 [13] as the fea-
ture extractor, consistent with other baselines [49, 56]. We
have C8 = 128, C4 = 64, C1 = C2 = 32.

7.3. Dense-image to sparse-instance features
We express the Eq. (2) as the visualization in Fig. 7. It in-
volves extracting feature vectors F̄(x, y, t) and instance to-
ken vectors Ti for each uncertainty index (x, y, t, i) 2 U.
These vectors undergo channel-wise multiplication, empha-
sizing channels relevant to each instance. A subsequent
MLP layer then converts this product into sparse, instance-
specific features.

7.4. Detail aggregation
This process, akin to a U-net decoder, aggregates features
from different scales, as detailed in Fig. 8. It involves
upscaling sparse features and merging them with corre-
sponding higher-scale features. However, this requires pre-
computed downscale indices from dummy sparse convolu-
tions on the full input image.

7.5. Sparse matte head
Our matte head design, inspired by MGM [56], comprises
two sparse convolutions with intermediate normalization
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Figure 7. Converting Dense-Image to Sparse-Instance Fea-
tures. We transform the dense image features into sparse,
instance-specific features with the help of instance tokens.

and activation (Leaky ReLU) layers. The final output un-
dergoes sigmoid activation for the final prediction. Non-
refined locations in the dense prediction are assigned a value
of zero.

7.6. Sparse progressive refinement

The PRM module progressively refines A8 ! A4 ! A1 to
have A. We assume that all predictions are rescaled to the
largest size and perform refinement between intermediate
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Figure 8. Detail Aggregation Module merges sparse features
across scales. This module equalizes spatial scales of sparse fea-
tures using inverse sparse convolution, facilitating their combina-
tion.



predictions and uncertainty indices U:

A = A8 (5)

R4(j) =

(
1, if j 2 D(A) and j 2 U

0, otherwise
(6)

A = A⇥ (1�R4) +R4 ⇥A4 (7)

R1(j) =

(
1, if j 2 D(A) and j 2 U

0, otherwise
(8)

A = A⇥ (1�R1) +R1 ⇥A4 (9)

where j = (x, y, t, i) is an index in the output; R1,R4 in
shape T ⇥N ⇥H⇥W ; and D(A) = dilation(0 < A < 1)
is the indices of all dilated uncertainty values on A. The
dilation kernel is set to 30, 15 for R4,R1 respectively.

7.7. Attention loss and loss weight

With A
gt as the ground-truth alpha matte and its 1

8 down-
scaled version A

gt
8 , we define a binarized Ã

gt
8 = A

gt
8 > 0.

The attention loss Latt is:

Latt =
NX

i

���1� Aff(i)>Ãgt
8 (i)

���
1

(10)

aiming to maximize each instance token Ti’s attention
score to its corresponding groundtruth region Ã

gt
8 (i).

The weight W8 at each location is:

W8(j) =

(
�, if 0 < A

gt
8 (j) < 1 and 0 < A8(j) < 1

1.0, otherwise
(11)

with � = 2.0 in our experiments, focusing on under-refined
ground-truth and over-refined predicted areas.

7.8. Temporal sparsity prediction

A key aspect of our approach is the prediction of tempo-
ral sparsity to maintain consistency between frames. This
module contrasts the feature maps of consecutive frames to
predict their absolute differences. Comprising three convo-
lution layers with batch normalization and ReLU activation,
this module processes the concatenated feature maps from
two adjacent frames and predicts the binary differences be-
tween them.

Unlike SparseMat [50], which relies on manual thresh-
old selection for frame differences, our method offers a
more robust and domain-independent approach to determin-
ing frame sparsity. This is particularly effective in handling
variations in movement, resolution, and domain between
frames, as demonstrated in Fig. 9

SparseMat [50] Ours

Figure 9. Temporal Sparsity Between Two Consecutive
Frames. The top row displays a pair of successive frames. Below,
the second row illustrates the predicted differences by two distinct
frameworks, with areas of discrepancy emphasized in white. In
contrast to SparseMat’s output, which appears cluttered and noisy,
our module generates a more refined sparsity map. This map ef-
fectively accentuates the foreground regions that undergo notable
changes between the frames, providing a clearer and more focused
representation of temporal sparsity. (Best viewed in color).

7.9. Forward and backward matte fusion
The forward-backward fusion for the i-th instance at frame
t is respectively:

A
f (t, i) = �(t)⇥A(t, i)

+ (1��(t))⇥A
f (t� 1, i)

(12)

A
b(t, i) = �(t+ 1)⇥A(t, i)

+ (1��(t+ 1))⇥A
b(t+ 1, i)

(13)

Each entry j = (x, y, t, i) on final output Atemp is:

A
temp(j) =

(
A(j), if Af (j) 6= A

b(j)

A
f (j), otherwise

(14)

This fusion enhances temporal consistency and minimizes
error propagation.

8. Image matting
This section expands on the image matting process, provid-
ing additional insights into dataset generation and compre-
hensive comparisons with existing methods. We delve into
the creation of I-HIM50K and M-HIM2K datasets, offer de-
tailed quantitative analyses, and present further qualitative
results to underscore the effectiveness of our approach.

8.1. Dataset generation and preparation
The I-HIM50K dataset was synthesized from the
HHM50K [50] dataset, which is known for its exten-
sive collection of human image mattes. We employed a



Table 8. Ten models with vary mask quality are used in M-
HIM2K. The MaskRCNN models are from detectron2 trained on
COCO with different settings.

Model COCO mask AP (%)

r50 c4 3x 34.4

r50 dc5 3x 35.9

r101 c4 3x 36.7

r50 fpn 3x 37.2

r101 fpn 3x 38.6

x101 fpn 3x 39.5

r50 fpn 400e 42.5

regnety 400e 43.3

regnetx 400e 43.5

r101 fpn 400e 43.7

MaskRCNN [14] Resnet-50 FPN 3x model, trained on the
COCO dataset, to filter out single-person images, resulting
in a subset of 35,053 images. Following the InstMatt [49]
methodology, these images were composited against
diverse backgrounds from the BG20K [29] dataset, creating
multi-instance scenarios with 2-5 subjects per image.
The subjects were resized and positioned to maintain a
realistic scale and avoid excessive overlap, as indicated by
instance IoUs not exceeding 30%. This process yielded
49,737 images, averaging 2.28 instances per image. During
training, guidance masks were generated by binarizing the
alpha mattes and applying random dropout, dilation, and
erosion operations. Sample images from I-HIM50K are
displayed in Fig. 10.

The M-HIM2K dataset was designed to test model ro-
bustness against varying mask qualities. It comprises ten
masks per instance, generated using various MaskRCNN

Figure 10. Examples of I-HIM50K dataset. (Best viewed in
color).

models. More information about models used for this gen-
eration process is shown in Table 8. The masks were
matched to instances based on the highest IoU with the
ground truth alpha mattes, ensuring a minimum IoU thresh-
old of 70%. Masks that did not meet this threshold were ar-
tificially generated from ground truth. This process resulted
in a comprehensive set of 134,240 masks, with 117,660 for
composite and 16,600 for natural images, providing a robust
benchmark for evaluating masked guided instance matting.
The full dataset I-HIM50K and M-HIM2K will be released
after the acceptance of this work.

8.2. Training details
We initialized our feature extractor with ImageNet [43]
weights, following previous methods [49, 56]. Our mod-
els were retrained on the I-HIM50K dataset with a crop size
512. All baselines underwent 100 training epochs, using
the HIM2K composition set for validation. The training
was conducted on 4 A100 GPUs with a batch size 96. We
employed AdamW for optimization, with a learning rate of
1.5 ⇥ 10�4 and a cosine decay schedule post 1,500 warm-
up iterations. The training also incorporated curriculum
learning as MGM and standard augmentation as other base-
lines. During training, mask orders were shuffled, and some
masks were randomly omitted. In testing, images were re-
sized to have a short side of 576 pixels.

8.3. Quantitative details
We extend the ablation study from the main paper, provid-
ing detailed statistics in Table 9 and Table 10. These ta-
bles offer insights into the average and standard deviation

Image Mask Foreground Alpha matte

Figure 11. Our framework can generalize to any object. With-
out humans appearing in the image, our framework still performs
the matting task very well to the mask-guided objects. (Best
viewed in color and digital zoom).



Table 9. Full details of different input mask setting on HIM2K+M-HIM2K. (Extension of Table 3). Bold denotes the lowest average
error.

Mask input
Composition Natural

MAD MADf MADu MSE SAD Grad Conn MAD MADf MADu MSE SAD Grad Conn

Stacked
27.01 68.83 381.27 18.82 16.35 16.80 15.72 39.29 61.39 213.27 25.10 25.52 16.44 23.26 mean

0.83 5.93 7.06 0.76 0.50 0.31 0.51 4.21 13.37 14.10 4.01 2.00 0.70 2.02 std

Embeded(Ce = 1)
19.18 68.04 330.06 12.40 11.64 13.00 11.16 33.60 60.35 188.44 20.63 21.40 13.44 19.18 mean

0.87 8.07 6.96 0.80 0.52 0.27 0.52 4.07 12.60 12.28 3.86 1.81 0.57 1.83 std

Embeded(Ce = 2)
21.74 84.64 355.95 14.46 13.23 14.39 12.69 35.16 59.55 193.95 21.93 22.59 14.51 20.40 mean

0.92 7.33 7.68 0.85 0.55 0.27 0.55 4.23 13.79 13.45 4.03 2.31 0.61 2.32 std

Embeded(Ce = 3)
17.75 53.23 315.43 11.19 10.79 12.52 10.32 33.06 56.69 189.59 20.22 19.43 13.11 17.30 mean

0.66 5.04 6.31 0.60 0.39 0.24 0.39 3.74 11.90 12.49 3.58 1.92 0.51 1.95 std

Embeded(Ce = 5)
24.79 73.22 384.14 17.07 15.09 16.19 14.58 34.25 65.57 216.56 20.39 21.89 15.66 19.70 mean

0.88 4.99 7.24 0.79 0.52 0.30 0.52 4.16 13.59 13.09 3.96 2.31 0.58 2.32 std

Table 10. Full details of different training objective components on HIM2K+M-HIM2K. (Extension of Table 4). Bold denotes the
lowest average error.

Latt W8

Composition Natural

MAD MADf MADu MSE SAD Grad Conn MAD MADf MADu MSE SAD Grad Conn

31.77 52.70 294.22 24.13 18.92 16.58 18.27 46.68 51.23 176.60 33.61 32.89 15.68 30.64 mean

0.90 4.92 5.24 0.85 0.54 0.26 0.54 3.64 10.27 9.58 3.47 1.85 0.50 1.85 std

X 25.41 104.24 342.19 18.36 15.29 14.53 14.75 46.30 87.18 210.72 32.93 31.40 15.84 29.26 mean

0.72 6.15 5.53 0.67 0.43 0.23 0.43 3.71 11.68 10.62 3.55 1.85 0.50 1.86 std

X 17.56 53.51 302.07 11.24 10.65 12.34 10.22 32.95 51.11 183.13 20.41 19.23 13.29 17.06 mean

0.75 6.32 6.32 0.70 0.45 0.27 0.45 3.34 10.25 10.99 3.19 2.04 0.60 2.06 std

X X 17.55 47.81 301.96 11.23 10.68 12.34 10.19 32.03 53.15 183.42 19.42 19.60 13.16 17.43 mean

0.68 5.21 5.73 0.63 0.41 0.25 0.41 3.48 10.77 11.18 3.32 1.92 0.55 1.94 std

of performance metrics across HIM2K [49] and M-HIM2K
datasets. Our model not only achieves competitive aver-
age results but also maintains low variability in performance
across different error metrics. Additionally, we include the
Sum Absolute Difference (SAD) metric, aligning with pre-
vious image matting benchmarks.

Comprehensive quantitative results comparing our
model with baseline methods on HIM2K and M-HIM2K are
presented in Table 12. This analysis highlights the impact of
mask quality on matting output, with our model demonstrat-
ing consistent performance even with varying mask inputs.

We also perform another experiment when the MGM-
style refinement replaces our proposed sparse guided pro-
gressive refinement. The Table 11 shows the results where
our proposed method outperforms the previous approach in
all metrics.

8.4. More qualitative results on natural images

Fig. 13 showcases our model’s performance in challenging
scenarios, particularly in accurately rendering hair regions.
Our framework consistently outperforms MGM? in detail
preservation, especially in complex instance interactions. In

comparison with InstMatt, our model exhibits superior in-
stance separation and detail accuracy in ambiguous regions.

Fig. 14 and Fig. 15 illustrate the performance of our
model and previous works in extreme cases involving multi-
ple instances. While MGM? struggles with noise and accu-
racy in dense instance scenarios, our model maintains high
precision. InstMatt, without additional training data, shows
limitations in these complex settings.

Table 11. Compare between previous dense progressive refine-
ment (PR) - MGM and our proposed guided sparse progres-
sive refinement. Numbers are mean on HIM2K+M-HIM2K and
small numbers indicate the std.

PR MAD MSE Grad Conn MADf MADu

Comp Set

MGM 14.70 (0.4) 8.87 (0.3) 10.39 (0.2) 8.44 (0.2) 32.02 (1.5) 252.34 (4.2)

Ours 12.93 (0.3) 7.26 (0.3) 8.91 (0.1) 7.37 (0.2) 19.54 (1.0) 235.95 (3.4)

Natural Set

MGM 27.66 (4.1) 16.94 (3.9) 10.49 (0.7) 13.95 (1.5) 52.72 (12.1) 150.71 (13.3)

Ours 27.17 (3.3) 16.09 (3.2) 9.94 (0.6) 13.42 (1.4) 49.52 (8.0) 146.71 (11.6)



Image Mask Foreground Alpha matte

Figure 12. Our solution is not limited to human instances.
When testing with other objects, our solution is able to produce
fairly accurate alpha matte without training on them. (Best viewed
in color and digital zoom).

The robustness of our mask-guided approach is further
demonstrated in Fig. 16. Here, we highlight the challenges
faced by MGM variants and SparseMat in predicting miss-
ing parts in mask inputs, which our model addresses. How-
ever, it is important to note that our model is not designed
as a human instance segmentation network. As shown
in Fig. 17, our framework adheres to the input guidance,
ensuring precise alpha matte prediction even with multiple
instances in the same mask.

Lastly, Fig. 12 and Fig. 11 emphasize our model’s gen-
eralization capabilities. The model accurately extracts both
human subjects and other objects from backgrounds, show-
casing its versatility across various scenarios and object
types.

All examples are Internet images without groundtruth
and the mask from r101 fpn 400e are used as the guidance.



Image Mask InstMatt [49]
(public)

InstMatt [49] SparseMat
[50]

MGM [56] MGM? Ours

Figure 13. Our model produces highly detailed alpha matte on natural images. Our results show that it is accurate and comparable
with previous instance-agnostic and instance-awareness methods without expensive computational costs. Red squares zoom in the detail
regions for each instance. (Best viewed in color and digital zoom).



Image Mask InstMatt [49]
(public)

InstMatt [49] SparseMat
[50]

MGM [56] MGM? Ours

Figure 14. Our frameworks precisely separate instances in an extreme case with many instances. While MGM often causes the
overlapping between instances and MGM? contains noises, ours produces on-par results with InstMatt trained on the external dataset. Red
arrow indicates the errors. (Best viewed in color and digital zoom).



Image Mask InstMatt [49]
(public)

InstMatt [49] SparseMat
[50]

MGM [56] MGM? Ours

Figure 15. Our frameworks precisely separate instances in a single pass. The proposed solution shows comparable results with InstMatt
and MGM without running the prediction/refinement five times. Red arrow indicates the errors. (Best viewed in color and digital zoom).

Image Mask InstMatt [49]
(public)

InstMatt [49] SparseMat
[50]

MGM [56] MGM? Ours

Figure 16. Unlike MGM and SparseMat, our model is robust to the input guidance mask. With the attention head, our model
produces more stable results to mask inputs without complex refinement between instances like InstMatt. Red arrow indicates the errors.
(Best viewed in color and digital zoom).

Image Mask InstMatt [49]
(public)

InstMatt [49] SparseMat
[50]

MGM [56] MGM? Ours

Figure 17. Our solution works correctly with multi-instance mask guidances. When multiple instances exist in one guidance mask,
we still produce the correct union alpha matte for those instances. Red arrow indicates the errors or the zoom-in region in red box. (Best
viewed in color and digital zoom).



Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without
retraining.

Model
Composition set Natural set

Mask from
MAD MADf MADu MSE SAD Grad Conn MAD MADf MADu MSE SAD Grad Conn

Instance-agnostic

MGM
[39]

25.79 69.67 331.73 17.00 15.65 13.64 14.91 48.05 103.81 233.85 32.66 27.44 14.72 25.07 r50 c4 3x

24.75 70.92 316.59 16.21 15.01 13.17 14.23 34.67 66.28 183.48 21.03 22.82 12.79 20.30 r50 dc5 3x

23.60 66.79 321.23 15.03 14.38 13.19 13.62 35.51 70.94 198.99 20.96 22.62 13.73 20.17 r101 c4 3x

24.55 67.27 316.29 15.97 14.91 13.14 14.12 33.66 67.41 184.99 19.93 21.99 13.06 19.43 r50 fpn 3x

23.42 66.37 310.99 14.94 14.21 12.84 13.42 35.14 72.30 183.87 21.02 21.87 12.82 19.34 r101 fpn 3x

22.71 63.35 305.67 14.36 13.81 12.64 13.03 31.06 61.76 175.33 17.60 20.98 12.61 18.44 x101 fpn 3x

22.03 61.91 300.29 13.85 13.36 12.30 12.59 29.16 57.59 165.22 15.93 20.10 11.76 17.56 r50 fpn 400e

21.37 57.28 296.73 13.18 12.98 12.16 12.21 26.40 51.24 158.95 13.42 17.73 11.45 15.10 regnety 400e

21.78 60.31 297.14 13.62 13.22 12.25 12.46 27.09 49.26 160.05 13.82 17.48 11.20 14.87 regnetx 400e

21.52 60.07 297.14 13.44 13.14 12.20 12.38 24.41 51.46 152.90 11.62 17.43 11.09 14.84 r101 fpn 400e

23.15 64.39 309.38 14.76 14.07 12.75 13.30 32.52 65.20 179.76 18.80 21.05 12.52 18.51 mean

1.52 4.49 12.01 1.30 0.92 0.52 0.92 6.74 15.94 23.87 5.99 3.09 1.17 3.16 std

MGM
[56]

15.94 32.55 266.64 9.62 9.68 10.11 9.18 37.55 86.64 191.09 24.03 21.15 11.34 18.94 r50 c4 3x

16.05 36.36 264.96 9.81 9.75 10.10 9.26 32.58 68.52 172.83 19.58 20.17 10.92 17.80 r50 dc5 3x

15.40 30.89 264.28 9.17 9.37 10.01 8.90 31.24 69.59 175.67 18.15 18.57 10.83 16.26 r101 c4 3x

15.93 34.54 265.44 9.68 9.67 10.10 9.20 32.83 75.06 173.63 19.72 19.13 10.85 16.81 r50 fpn 3x

15.74 34.23 263.35 9.50 9.55 10.02 9.07 30.77 69.10 171.92 17.78 18.22 10.67 15.95 r101 fpn 3x

15.23 36.18 260.80 9.03 9.27 9.92 8.76 30.09 63.23 167.58 17.34 18.51 10.69 16.09 x101 fpn 3x

14.96 34.13 259.17 8.81 9.08 9.83 8.61 28.28 50.35 158.02 15.71 17.71 10.24 15.25 r50 fpn 400e

14.53 31.71 256.33 8.41 8.83 9.73 8.35 26.95 49.55 155.63 14.43 15.69 9.98 13.34 regnety 400e

14.82 33.06 257.09 8.69 9.01 9.80 8.53 26.61 47.81 154.05 14.22 15.45 9.87 13.16 regnetx 400e

14.65 31.71 256.29 8.53 8.94 9.74 8.46 25.42 51.73 153.11 13.03 15.73 9.90 13.44 r101 fpn 400e

15.32 33.54 261.43 9.13 9.31 9.94 8.83 30.23 63.16 167.35 17.40 18.03 10.53 15.70 mean

0.57 1.88 4.00 0.51 0.34 0.15 0.34 3.62 12.97 12.14 3.26 1.93 0.50 1.94 std



Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without
retraining. (Continued)

SparseMat
[50]

23.14 47.59 378.89 16.37 13.97 15.56 13.54 46.28 101.48 255.98 31.99 26.81 17.97 24.82 r50 c4 3x

21.94 49.48 358.08 15.36 13.24 14.90 12.80 36.93 67.62 213.46 23.76 22.11 16.05 20.01 r50 dc5 3x

21.78 43.36 368.59 15.15 13.16 15.21 12.72 38.32 77.98 234.69 24.51 22.83 17.19 20.78 r101 c4 3x

21.94 47.00 361.30 15.33 13.24 14.99 12.80 37.16 74.18 218.62 23.95 21.95 16.39 19.86 r50 fpn 3x

21.43 46.51 356.43 14.88 12.93 14.81 12.48 35.95 72.78 218.46 22.62 20.67 16.11 18.58 r101 fpn 3x

20.63 47.73 349.81 14.12 12.48 14.58 12.02 34.32 64.51 209.64 21.10 20.44 16.03 18.33 x101 fpn 3x

20.29 44.20 342.14 13.93 12.22 14.21 11.76 31.44 57.51 197.53 18.58 19.49 14.96 17.35 r50 fpn 400e

19.65 41.20 340.38 13.29 11.85 14.08 11.38 30.21 48.53 194.90 17.32 17.47 14.82 15.31 regnety 400e

19.90 41.40 336.40 13.56 12.02 14.03 11.56 29.85 52.17 191.09 16.99 17.19 14.52 15.03 regnetx 400e

19.81 43.43 337.43 13.50 12.01 14.05 11.55 29.83 61.40 191.89 17.07 17.13 14.48 14.96 r101 fpn 400e

21.05 45.19 352.95 14.55 12.71 14.64 12.26 35.03 67.82 212.63 21.79 20.61 15.85 18.50 mean

1.17 2.85 14.24 1.02 0.70 0.54 0.71 5.13 15.19 20.77 4.68 3.03 1.16 3.08 std

Instance-awareness

InstMatt
[49]

12.98 23.71 257.74 5.76 7.94 9.47 7.27 31.15 60.03 174.10 15.91 18.12 10.64 15.73 r50 c4 3x

13.15 23.08 257.38 5.96 8.05 9.48 7.38 28.05 51.53 164.19 13.63 16.89 10.33 14.53 r50 dc5 3x

12.99 22.42 257.52 5.79 7.93 9.47 7.26 27.06 48.52 162.72 12.90 16.06 10.29 13.68 r101 c4 3x

13.13 20.60 256.70 5.90 8.03 9.47 7.36 28.31 49.87 164.16 13.97 16.86 10.37 14.49 r50 fpn 3x

13.04 23.98 257.51 5.85 7.96 9.45 7.28 28.92 59.32 168.72 14.37 16.98 10.40 14.64 r101 fpn 3x

12.77 22.16 255.33 5.63 7.83 9.40 7.16 27.02 46.39 162.89 12.82 16.49 10.27 14.08 x101 fpn 3x

12.61 21.31 254.27 5.55 7.71 9.36 7.05 25.33 44.84 157.03 11.23 15.54 9.97 13.18 r50 fpn 400e

12.58 23.53 253.85 5.57 7.69 9.35 7.03 24.34 41.62 154.89 10.65 15.22 10.00 12.85 regnety 400e

12.59 20.48 252.68 5.53 7.71 9.35 7.04 24.18 40.96 154.69 10.09 14.68 9.82 12.28 regnetx 400e

12.67 21.14 253.13 5.60 7.75 9.35 7.09 23.22 43.23 151.78 9.67 15.00 9.88 12.60 r101 fpn 400e

12.85 22.24 255.61 5.71 7.86 9.41 7.19 26.76 48.63 161.52 12.52 16.18 10.20 13.81 mean

0.23 1.31 2.00 0.16 0.14 0.06 0.13 2.48 6.76 6.94 2.05 1.08 0.26 1.08 std

InstMatt
[49]

18.23 57.23 298.66 10.51 11.06 11.33 10.45 37.91 86.84 202.20 22.28 21.31 12.22 19.11 r50 c4 3x

17.85 58.98 291.50 10.38 10.87 11.13 10.27 30.10 63.83 173.94 15.90 18.01 11.25 15.82 r50 dc5 3x

17.25 51.21 292.66 9.80 10.50 11.13 9.90 30.22 59.65 178.94 15.62 17.49 11.55 15.23 r101 c4 3x

17.69 55.80 292.90 10.22 10.80 11.19 10.19 30.27 60.16 175.66 16.44 17.38 11.33 15.13 r50 fpn 3x

17.18 55.67 288.95 9.85 10.45 11.02 9.84 28.80 60.88 170.89 14.55 16.88 11.12 14.69 r101 fpn 3x

16.65 53.37 284.66 9.41 10.16 10.85 9.56 27.77 55.06 168.20 14.14 16.91 11.04 14.70 x101 fpn 3x

16.29 52.00 281.15 9.21 9.88 10.69 9.29 25.51 52.89 156.40 12.15 15.90 10.47 13.70 r50 fpn 400e

15.99 50.92 279.15 8.97 9.71 10.65 9.12 24.82 45.83 156.46 11.83 15.14 10.43 12.94 regnety 400e

16.47 51.85 280.00 9.37 10.01 10.69 9.42 23.73 47.85 153.70 10.35 14.69 10.17 12.49 regnetx 400e

16.30 50.58 279.40 9.29 9.95 10.63 9.36 22.47 45.33 150.96 9.72 14.71 10.17 12.50 r101 fpn 400e

16.99 53.76 286.90 9.70 10.34 10.93 9.74 28.16 57.83 168.74 14.30 16.84 10.98 14.63 mean

0.76 2.96 6.95 0.53 0.47 0.26 0.46 4.45 12.15 15.45 3.65 1.97 0.66 1.97 std

Continued on next page



Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without
retraining. (Continued)

MGM?

14.87 46.70 256.01 8.32 8.99 10.31 8.32 37.36 65.40 181.68 23.97 20.50 11.66 17.45 r50 c4 3x

14.65 43.00 253.75 8.21 8.87 10.25 8.22 33.70 60.48 172.03 20.83 18.51 11.29 15.93 r50 dc5 3x

14.36 38.88 252.30 7.89 8.71 10.19 8.04 33.95 60.54 173.47 20.59 17.94 11.24 15.30 r101 c4 3x

14.68 44.85 254.50 8.21 8.88 10.24 8.22 33.29 54.82 170.89 20.21 18.28 11.27 15.55 r50 fpn 3x

14.70 44.68 254.29 8.24 8.89 10.21 8.25 32.07 68.47 171.41 18.80 17.44 11.07 14.84 r101 fpn 3x

14.27 43.56 251.19 7.83 8.68 10.13 8.00 30.96 50.90 166.14 18.02 17.53 11.07 14.91 x101 fpn 3x

13.94 38.70 248.02 7.58 8.46 10.00 7.79 29.86 48.23 158.22 16.92 16.91 10.79 14.32 r50 fpn 400e

13.57 39.12 246.18 7.24 8.21 9.89 7.56 28.53 46.70 156.07 15.84 15.98 10.52 13.38 regnety 400e

14.11 41.69 247.92 7.75 8.57 10.00 7.91 27.17 41.88 150.59 14.42 15.35 10.36 12.75 regnetx 400e

13.95 38.26 246.60 7.60 8.48 9.95 7.83 26.89 41.53 150.85 14.23 15.74 10.42 13.12 r101 fpn 400e

14.31 41.94 251.08 7.89 8.67 10.12 8.01 31.38 53.89 165.13 18.38 17.42 10.97 14.75 mean

0.42 3.05 3.63 0.35 0.24 0.15 0.24 3.34 9.56 10.59 3.11 1.53 0.43 1.43 std

Ours

13.13 17.81 239.98 7.41 7.92 9.05 7.47 34.54 64.64 171.51 23.05 18.36 11.02 16.23 r50 c4 3x

13.28 21.29 238.15 7.61 8.03 9.03 7.58 27.66 52.90 149.52 16.56 16.05 10.15 13.90 r50 dc5 3x

13.20 19.24 240.33 7.49 7.98 9.07 7.53 29.04 54.52 154.34 17.75 16.72 10.53 14.58 r101 c4 3x

13.20 19.37 237.53 7.52 7.98 8.98 7.53 28.50 53.64 150.67 17.37 15.91 10.18 13.74 r50 fpn 3x

13.02 20.89 238.27 7.35 7.91 8.98 7.45 28.32 52.55 150.76 17.21 15.87 10.12 13.71 r101 fpn 3x

12.98 19.27 236.44 7.32 7.87 8.93 7.41 27.12 51.27 146.81 16.12 15.92 10.00 13.76 x101 fpn 3x

12.65 19.92 233.05 7.01 7.64 8.80 7.18 24.72 44.25 137.65 13.83 14.83 9.60 12.68 r50 fpn 400e

12.55 19.59 231.94 6.93 7.58 8.73 7.12 24.99 41.32 139.09 14.02 14.32 9.38 12.15 regnety 400e

12.60 19.04 231.50 6.96 7.65 8.78 7.19 23.64 39.60 134.20 12.69 14.12 9.27 11.94 regnetx 400e

12.69 19.01 232.26 7.05 7.69 8.78 7.23 23.16 40.47 132.55 12.25 13.67 9.17 11.49 r101 fpn 400e

12.93 19.54 235.95 7.26 7.82 8.91 7.37 27.17 49.52 146.71 16.09 15.58 9.94 13.42 mean

0.28 0.99 3.44 0.25 0.17 0.13 0.17 3.34 7.95 11.60 3.16 1.39 0.59 1.41 std



Table 13. The effectiveness of proposed temporal consistency
modules on V-HIM60 (Extension of Table 6). The combination of
bi-directional Conv-GRU and forward-backward fusion achieves
the best overall performance on three test sets. Bold highlights the
best for each level.

Conv-GRU Fusion
MAD MADf MADu MSE SAD Grad Conn dtSSD MESSDdt

Single Bi Âf Âb

Easy level

10.26 13.64 192.97 4.08 3.73 4.12 3.47 16.57 16.55

X 10.15 12.83 192.69 4.03 3.71 4.09 3.44 16.42 16.44

X 10.14 12.70 192.67 4.05 3.70 4.09 3.44 16.41 16.42

X X 11.32 20.13 194.27 5.01 4.10 4.67 3.85 16.51 17.85

X X X 10.12 12.60 192.63 4.02 3.68 4.08 3.43 16.40 16.41

Medium level

13.88 4.78 202.20 5.27 5.56 6.30 5.11 23.67 38.90

X 13.84 4.56 202.13 5.44 5.70 6.35 5.14 23.66 38.25

X 13.83 4.52 202.02 5.39 5.63 6.33 5.12 23.66 38.22

X X 15.33 9.02 207.61 6.45 6.09 7.56 5.64 24.08 39.82

X X X 13.85 4.48 202.02 5.37 5.53 6.31 5.11 23.63 38.12

Hard level

21.62 30.06 253.94 11.69 7.38 7.07 7.01 30.50 43.54

X 21.26 28.60 253.42 11.46 7.25 7.12 6.95 29.95 43.03

X 21.25 28.55 253.17 11.56 7.25 7.10 6.91 29.92 43.01

X X 24.97 45.62 260.08 14.62 8.55 9.92 8.17 30.66 48.03

X X X 21.23 28.49 252.87 11.53 7.24 7.08 6.89 29.90 42.98

9. Video matting
This section elaborates on the video matting aspect of our
work, providing details about dataset generation and of-
fering additional quantitative and qualitative analyses. For
an enhanced viewing experience, we recommend visit our
website, which contains video samples from V-HIM60 and
real video results of our method compared to baseline ap-
proaches.

9.1. Dataset generation
To create our video matte dataset, we utilized the BG20K
dataset for backgrounds and incorporated video back-
grounds from VM108. We allocated 88 videos for training
and 20 for testing, ensuring each video was limited to 30
frames. To maintain realism, each instance within a video
displayed an equal number of randomly selected frames
from the source videos, with their sizes adjusted to fit within
the background height without excessive overlap.

We categorized the dataset into three levels of difficulty,
based on the extent of instance overlap:
• Easy Level: Features 2-3 distinct instances per video

with no overlap.
• Medium Level: Includes up to 5 instances per video,

with occlusion per frame ranging from 5 to 50%.
• Hard Level: Also comprises up to 5 instances but with

a higher occlusion range of 50 to 85%, presenting more

Table 14. Our framework outperforms baselines in almost
metrics on V-HIM60 (Extension of Table 7). We extend the result
in the main paper with more metrics and our model is the best over-
all. Bold and underline indicates the best and second-best model
among baselines in the same test set.

Model MAD MADf MADu MSE SAD Grad Conn dtSSD MESSDdt

Easy level

MGM-TCVOM 11.36 18.49 202.28 5.13 4.11 4.57 3.83 17.02 19.69

MGM?-TCVOM 10.97 20.33 187.59 5.04 3.98 4.19 3.70 16.86 15.63

InstMatt 13.77 38.17 219.00 5.32 4.96 4.95 3.98 17.86 18.22

SparseMat 12.02 21.00 205.41 6.31 4.37 4.49 4.11 19.86 24.75

Ours 10.12 12.60 192.63 4.02 3.68 4.08 3.43 16.40 16.41

Medium level

MGM-TCVOM 14.76 4.92 218.18 5.85 5.86 7.17 5.41 23.39 39.22

MGM?-TCVOM 13.76 4.61 201.58 5.50 5.49 6.47 5.02 23.99 42.71

InstMatt 19.34 35.05 223.39 7.50 7.55 7.21 6.02 24.98 54.27

SparseMat 18.20 10.59 250.89 10.06 7.30 8.03 6.87 30.19 85.79

Ours 13.85 4.48 202.02 5.37 5.53 6.31 5.11 23.63 38.12

Hard level

MGM-TCVOM 22.16 31.89 271.27 11.80 7.65 7.91 7.27 31.00 47.82

MGM?-TCVOM 22.59 36.01 264.31 13.03 7.75 7.86 7.32 32.75 37.83

InstMatt 27.24 58.23 275.07 14.40 9.23 7.88 8.02 31.89 47.19

SparseMat 24.83 32.26 312.22 15.87 8.53 8.47 8.19 36.92 55.98

Ours 21.23 28.49 252.87 11.53 7.24 7.08 6.89 29.90 42.98

complex instance interactions.
During training, we applied dilation and erosion kernels

to binarized alpha mattes to generate input masks. For test-
ing purposes, masks were created using the XMem tech-
nique, based on the first-frame binarized alpha matte.

We have prepared examples from the testing dataset
across all three difficulty levels, which can be viewed in
the website for a more immersive experience. The datasets
V-HIM2K5 and V-HIM60 will be made publicly available
following the acceptance of this work.

9.2. Training details

For video dataset training (V-HIM2K5), we initialized our
model with weights from the image pretraining phase. The
training involved processing approximately 2.5M frames,
using a batch size of 4 and a frame sequence length of
T = 5 on 8 A100 GPUs. We adjusted the learning rate to
5⇥ 10�5, maintaining the cosine learning rate decay with a
1,000-iteration warm-up. In addition to the image augmen-
tations, we incorporated motion blur (from OTVM) during
training. Image sizes are kept the same as previously. The
first 3,000 iterations continued to use curriculum learning.
In addition to the image augmentations, we incorporated
motion blur (from OTVM) during training. For testing, the
frame size was standardized to a short-side length of 576
pixels.



9.3. Quantitative details
Our ablation study, detailed in Table 13, focuses on vari-
ous temporal consistency components. The results demon-
strate that our proposed combination of Bi-Conv-GRU and
forward-backward fusion outperforms other configurations
across all metrics. Additionally, Table 14 compares our
model’s performance against previous baselines using vari-
ous error metrics. Our model consistently achieves the low-
est error rates in almost all metrics.

An illustrative comparison of the impact of different tem-
poral modules is presented in Fig. 18. The addition of Conv-
GRU significantly reduces noise, although some residual
noise remains. Implementing forward fusion Â

f enhances
temporal consistency but also propagates errors from previ-
ous frames. This issue is effectively addressed by integrat-
ing Â

b, which balances and corrects these errors, improving
overall performance.

In an additional experiment, we evaluated trimap-
propagation matting models (OTVM [45], FTP-VM [17]),
which typically receive a trimap for the first frame and prop-
agate it through the remaining frames. To make a fair com-
parison with our approach, which utilizes instance masks
for each frame, we integrated our model with these trimap-
propagation models. The trimap predictions were binarized
and used as input for our model. The results, as shown
in Table 15, indicate a significant improvement in accu-
racy when our model is used, compared to the original
matte decoder of the trimap-propagation models. This ex-
periment underscores the flexibility and robustness of our
proposed framework, which is capable of handling various
mask qualities and mask generation methods.

9.4. More qualitative results
For a more immersive and detailed understanding of our
model’s performance, we recommend viewing the exam-
ples on our website which includes comprehensive results
and comparisons with previous methods. Additionally, we
have highlighted outputs from specific frames in Fig. 19.

Regarding temporal consistency, SparseMat and our
framework exhibit comparable results, but our model
demonstrates more accurate outcomes. Notably, our out-
put maintains a level of detail on par with InstMatt, while
ensuring consistent alpha values across the video, particu-
larly in background and foreground regions. This balance
between detail preservation and temporal consistency high-
lights the advanced capabilities of our model in handling the
complexities of video instance matting.

For each example, the first-frame human masks are gen-
erated by r101 fpn 400e and propagated by XMem for the
rest of the video.



Table 15. Our framework also reduces the errors of trimap propagation baselines. When replacing those models’ matte decoders with
ours, the number in all error metrics was reduced by a large margin. Gray rows denote the module from public weights without retraining
on our V-HIM2K5 dataset.

Trimap prediction Matte decoder MAD MADf MADu MSE SAD Grad Conn dtSSD MESSDdt

Easy level

OTVM OTVM 204.59 6.65 208.06 192.00 76.90 15.25 76.36 46.58 397.59

OTVM OTVM 36.56 299.66 382.45 29.08 14.16 6.62 14.01 24.86 69.26

OTVM Ours 31.00 260.25 326.53 24.58 12.15 5.76 11.94 22.43 55.19

FTP-VM FTP-VM 12.69 9.13 233.71 5.37 4.66 6.03 4.27 19.83 18.77

FTP-VM FTP-VM 13.69 24.54 269.88 6.12 5.07 6.69 4.78 20.51 22.54

FTP-VM Ours 9.03 4.77 194.14 3.07 3.31 3.94 3.08 16.41 15.01

Medium level

OTVM OTVM 247.97 14.20 345.86 230.91 98.51 21.02 97.74 66.09 587.47

OTVM OTVM 48.59 275.62 416.63 37.29 17.25 10.19 17.03 36.06 80.38

OTVM Ours 36.84 209.77 333.61 27.52 13.04 8.63 12.69 32.95 70.84

FTP-VM FTP-VM 40.46 32.59 287.53 28.14 15.80 12.18 15.13 32.96 125.73

FTP-VM FTP-VM 26.86 28.73 318.43 15.57 10.52 12.39 9.95 32.64 126.14

FTP-VM Ours 18.34 11.02 234.39 9.39 6.97 6.83 6.59 26.39 50.31

Hard level

OTVM OTVM 412.41 231.38 777.06 389.68 146.76 29.97 146.11 90.15 764.36

OTVM OTVM 140.96 1243.20 903.79 126.29 47.98 17.60 47.84 59.66 298.46

OTVM Ours 123.01 1083.71 746.38 111.16 41.52 16.41 41.24 55.78 257.28

FTP-VM FTP-VM 46.77 66.52 399.55 33.72 16.33 14.40 15.82 45.04 76.48

FTP-VM FTP-VM 48.11 95.17 459.16 35.56 16.51 14.87 16.12 45.29 78.66

FTP-VM Ours 30.12 62.55 326.61 19.13 10.37 8.61 10.07 36.81 66.49



Fr
am

e 
t

Fr
am

e 
t+

1

log |%(t) − *%(t)|

log |%(t + 1) − *%(t + 1)|

log |*%(t) − *%(t + 1)|

Image + Mask Groundtruth

Conv-GRU
Single X

Bidirectional X X X

Fusion
Â
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Figure 18. The effectiveness of different temporal components on the medium level of V-HIM60. Conv-GRU can improve the
result a bit, but not perfect. Our proposed fusion strategy improves the output in both foreground and background regions. The table
below denotes temporal components for each column. Red, blue arrows indicate the errors and improvements in comparison with the
result without any temporal module. We also visualize the error to the groundtruth (log |A� Â|) and the difference between consecutive
predictions(log |Â�Â|). The color-coded map (min-max range) to illustrate differences between consecutive frames is .
(Best viewed in color and digital zoom).
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Figure 19. Highlighted detail and consistency on natural video outputs. To watch the full videos, please check our website. We present
the foreground extracted and the difference to the previous frame output for each model. The color-coded map (min-max range) to illustrate
differences between consecutive frames is . Red arrows indicate the zoom-in region in the red square. (Best viewed in
color and digital zoom).


