
Anomaly Score: Evaluating Generative Models and Individual Generated
Images based on Complexity and Vulnerability

Supplementary Material

In this supplementary material, we include additional materials, which are not contained in the main paper because of the
page limit, such as an explanation of the employed generative models and details of the linear regression on vulnerability.
We also provide additional experimental results on various feature models and examples of generated images that are used
for the subjective test.

A. Employed generative models
We utilize various generated datasets from https://github.com/layer6ai-labs/dgm-eval [30], which are
listed below with respect to the target image dataset.
• CIFAR10 [20]: ACGAN [24], BigGAN [4], IDDPM [23], LoGAN [34], LSGM [32], MHGAN [12], PFGM++ [35],

ReacGAN [15], ResFlow [7], StyleGAN-XL [29], StyleGAN2-ada [18], WGAN [1]
• ImageNet [8]: ADM [10], BigGAN [4], DiT-XL-2 [26], GigaGAN [16], LDM [2], Mask-GIT [6], RQ-Transformer [21],

StyleGAN-XL [29], ADMG [9], ADMG-ADMU [9]
• FFHQ [17]: Efficient-vdVAE [19], InsGen [36], LDM [2], StyleGAN-XL [29], StyleGAN2-ada [18], StyleNAT [33],

StyleSwin [37], Unleashing-transformers [3], Projected GAN [28]

B. Parameter settings
We examine optimal parameter settings for computing complexity and vulnerability. Tab. B.1 shows the average complexity
and vulnerability of real and generated datasets with different parameter settings (i.e., ϵ, α, K, J) by using ConvNeXt as
a feature model. In Tab. B.1, complexity of the generated dataset (by PFGM++) is smaller than that of the real dataset
(CIFAR10) and vulnerability of the generated dataset is larger than that of the real dataset with parameter changes. The
overall tendency of the complexity and vulnerability is not affected by parameter changes.

complexity vulnerability
real generated real generated

ϵ
&

α 0.05 0.184 0.181 35.97 36.19
0.01 0.099 0.098 14.57 15.24

0.005 0.080 0.076 7.77 7.95
K&J=5 0.098 0.069 7.24 7.45

Table B.1. Complexity and vulnerability with various parameter settings. Each cell denotes the average complexity or vulnerability of
the real or generated dataset. In the upper three rows, K and J are fixed as 10. In the last row, ϵ and α are 0.01.

C. Two-tailed test for Tab. 1 and Tab. 2
We report one-tailed tests in Tab. 1 and Tab. 2 of the main paper because we assume that complexity and vulnerability of
generated datasets are smaller than or larger than those of real datasets. For statistical clarity, we show the two-tailed test
results in Tab. C.1 on the FFHQ dataset.

D. Linear regression on vulnerability
In Sec 3.2, we explore the motivation of vulnerability by calculating the contributions of super-pixels of images to the changes
caused by adversarial attacks. We randomly select 3 to 6 super-pixels, add adversarial perturbations into them, and obtain the
changes in the features due to the perturbations. We repeat this process 20 times. Then, we apply linear regression between
the feature change and the set of binary variables indicating whether each super-pixel is attacked or not. The linear regression
is described as: Y = VW + b, where Y is a 20 (# of trials)×1 vector of the feature change, V is a 20 (# of trials)×20 (#
of super-pixels) matrix of variables that indicate whether each super-pixel is selected or not on each trial, W is a 20 (# of
super-pixels)×1 vector of the linear regression coefficient, and b is a 20 (# of trials)×1 vector of bias. We consider the linear

https://github.com/layer6ai-labs/dgm-eval


ViT ConvNeXt DINO-V2

Complexity
Reference 0.0643 0.0627 0.0311
Generated 0.0638 0.0525 0.0302
p-value 0.4990 <0.0001∗ <0.0001∗

Vulnerability
Reference 18.30 14.57 12.90
Generated 19.22 17.21 16.34
p-value <0.0001∗ <0.0001∗ <0.0001∗

Table C.1. Complexity and vulnerability of FFHQ with two-tailed test. We compare the average value of complexity and vulnerability
for various feature models, ViT-S [11], ConvNeXt-tiny [22], and DINO-V2 [25]. ‘Reference’ indicates the original dataset, FFHQ [17].
‘Generated’ denotes the complexity and vulnerability obtained from datasets generated by InsGen [36] trained with FFHQ. ‘p-value’ denotes
the p-value of the two-tailed t-test under the null hypothesis that complexity of the generated dataset is equal to that of the reference dataset.
The cases with statistical significance are marked with ‘∗’.

regression coefficient W as the contribution of each super-pixel to the feature changes, i.e., vulnerability. If the coefficient is
large, the corresponding super-pixel greatly contributes to the vulnerability. On the other hand, if the coefficient is small, the
corresponding super-pixel contributes less to the vulnerability.

E. Results on various feature models
We use six feature models, ResNet50 [13], ViT-S [11], ConvNeXt-tiny [22], CLIP [27], DINO [5], and DINO-V2 [25]. Here,
we present additional experimental results on these feature models, which are not included in the main paper.

E.1. Complexity and vulnerability

Tab. E.1 indicates the average values of complexity and vulnerability of the reference datasets and generated datasets when
we use ResNet50, CLIP, and DINO as feature models. In most cases, complexity of the generated datasets is smaller than
that of the reference datasets. Vulnerability of the generated datasets is larger than that of the reference datasets except for a
few cases. These results are generally consistent with the results in the main paper (Tab. 1 and Tab. 2). However, in some
cases using ResNet50 and DINO, the results are not aligned with our assumption, implying that they are less preferable as
the feature model of our method.

E.2. Anomaly score

Fig. E.1 indicates evaluation results of all generative models targeting all image datasets (CIFAR10, ImageNet, and FFHQ)
using the proposed AS with various feature models except for DINO-V2. The results with DINO-V2 are shown in Fig. 8 of
the main paper.

Complexity ResNet50 CLIP DINO

CIFAR10
Reference 0.1900 1.9246 0.0647
Generated 0.1921 1.9234 0.0626
p-value - 0.0853 <0.0001∗

ImageNet
Reference 0.1170 1.9543 0.0326
Generated 0.1190 1.9366 0.0331
p-value - <0.0001∗ -

FFHQ
Reference 0.1273 1.9899 0.0424
Generated 0.1233 1.9893 0.0352
p-value <0.0001∗ 0.1489 <0.0001∗

Vulnerability ResNet50 CLIP DINO

CIFAR10
Reference 44.59 6.67 37.40
Generated 44.31 6.69 35.56
p-value - < 0.05∗ -

ImageNet
Reference 32.18 4.54 9.27
Generated 35.58 5.12 11.98
p-value <0.0001∗ <0.0001∗ <0.0001∗

FFHQ
Reference 30.22 4.52 13.9
Generated 30.85 4.39 12.57
p-value <0.0001∗ - -

Table E.1. Complexity and vulnerability of various datasets. We compare the average value of vulnerability for various feature models,
ResNet50 [13], CLIP [27], and DINO [5]. ‘Reference’ indicates the original dataset, such as CIFAR10 [20], ImageNet [8], and FFHQ [17].
‘Generated’ denotes datasets generated by PFGM++ [35], RQ Transformer [21], and InsGen [36] trained with the respective reference
datasets. ‘p-value’ denotes the p-value of the one-tailed t-test under the null hypothesis that complexity or vulnerability of the generated
dataset is equal to that of the reference dataset. The cases with statistical significance are marked with ‘∗’. ‘-’ means that the expectation
is not met, i.e., complexity (vulnerability) of the generated dataset is larger (smaller) than that of the reference dataset.
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Figure E.1. Performances of our method using various models for overall datasets. Each dot represents a distinct dataset generated by
a generative model. A high human error rate indicates a high-quality dataset, while a high AS score means a low-quality dataset.
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(b) ImageNet

0.10 0.15 0.20 0.25
Human error rate

0.2

0.0

0.2

0.4

Ou
rs

 (R
es

Ne
t5

0)

0.10 0.15 0.20 0.25
Human error rate

0.0

0.1

0.2

0.3

Ou
rs

 (C
LI

P)

0.10 0.15 0.20 0.25
Human error rate

0.2

0.0

0.2

0.4

0.6

0.8

Ou
rs

 (D
IN

O)

0.10 0.15 0.20 0.25
Human error rate

100

200

300

400

500

600

700

FI
D 

(D
IN

O-
V2

)

(c) FFHQ

Figure E.2. Overall results of evaluating generative models on various datasets. Each dot represents a distinct dataset generated by a
generative model. A high human error rate indicates a high-quality dataset, while a high AS score means a low-quality dataset. The first
three columns show AS with different feature models: ResNet50, CLIP, and DINO, respectively. The last column is the result of FID [14]
with the DINO-V2 model.

Fig. E.2 shows evaluation results of various generative models using AS with ResNet50, CLIP, and DINO as feature
models and FID with DINO-V2. In the case of CIFAR10 and FFHQ, AS correlates well with human perception (-0.72, -0.36,
and -0.89 pearson correlation coefficients (PCCs) on CIFAR10, and -0.47, -0.60, and -0.51 PCCs on FFHQ, respectively).
On the other hand, AS with ResNet50, CLIP, and DINO shows low correlations on generated datasets for ImageNet (0.45,
0.17, and -0.16 PCCs, respectively). Due to the weak alignment between the characteristics of the representation space of
ResNet50, CLIP, and DINO and our assumptions (Appendix E.1), the performance of the anomaly score using them is lower
than that using ViT-S, ConvNeXt-tiny, and DINO-V2.

F. Comparison with Inception-V3
In Sec. 4 of the main paper, we mainly use DINO-V2 as a feature model for FID since it shows high performance in [30].
Fig. F.1 shows the evaluation results using AS and FID with Inception-V3 [31] as a feature model. Experimental settings for
evaluation including used generative models and parameter settings are the same as those of Fig. 8 of the main paper. The
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Figure F.1. Performances of our method and FID using Inception-V3. We evaluate various generative models by the proposed method
and FID with Inception-V3. Each dot represents a distinct dataset generated by a generative model. A high human error rate indicates a
high-quality dataset, while a high AS score means a low-quality dataset.

PCC of ours is -0.54, which has a comparatively weaker correlation than one of our methods using DINO-V2 (-0.81). On the
other hand, FID using Inception-V3 shows a comparatively stronger correlation (PCC=-0.71) compared to FID using DINO-
V2 (PCC=-0.54). However, FID using Inception-V3 provides poor evaluation performance on generative models targeting
ImageNet [30]. Thus, in the main paper, we mainly compare our method with FID using DINO-V2.

G. Transformation of anomaly score
We define anomaly score by comparing the distributions of complexity and vulnerability. Here, we provide the additional
experimental results when we evaluate generative models using the average of individual AS-i. For evaluating each generated
dataset targeting FFHQ utilizing ConvNeXt as a feature model, we first compute the individual score, AS-i, of each image
and then take the average across the images in the dataset. As shown in Fig. G.1, the average of AS-i does not work well
in evaluating generative models. This seems to be because numerical differences in AS-i is limited to capture distributional
differences between real and generated datasets.
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Figure G.1. Performance of the average of AS-i. We evaluate generative models targeting FFHQ by the average of AS-i using ConvNeXt
as a feature model. Each dot represents a distinct generated dataset. A high human error rate indicates a high-quality dataset, while a high
average of AS-i means a low-quality dataset.

H. Images for subjective test
In Sec. 5 of the main paper, we evaluate our anomaly score for individual images, AS-i, by conducting the subjective test
with 20 images for each AS-i level. Fig. H.1 shows example images according to each AS-i level. If an image has a low AS-i
level, the image looks natural and clear, like real images. Images with higher AS-i levels contain more unnatural components,
such as abnormal patterns in faces and backgrounds. Fig. H.1 shows that the severity of the unnatural pattern in the image
increases as the AS-i level increases.
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Figure H.1. Examples having various levels of AS-i.
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