
FlowerFormer: Empowering Neural Architecture Encoding
using a Flow-aware Graph Transformer

Supplementary Material

1. Dataset description
In this section, we provide detailed descriptions of the
datasets used.
• NAS-Bench-101 [17] is a dataset with 423K architectures

trained on the CIFAR-10 [6] dataset. NAS-Bench-101 has
an operation-on-node (OON) search space [10, 11]. Fol-
lowing Ning et al. [11], we used the same subset of the
NAS-Bench-101 dataset. This subset consists of 14,580
architectures.

• NAS-Bench-201 [3] is a dataset with 15K architectures
trained on the CIFAR-10 dataset. We transformed the
dataset, which is originally operation-on-edge (OOE)-
based, into the OON format.

• NAS-Bench-301 [18] is a surrogate benchmark with 57K
architectures each of which consists of two cells (spec.,
normal and reduction cells). This dataset is originally
OOE-based, and we converted the dataset into the OON
format. Following Ning et al. [11], we only used the an-
chor architecture-performance pairs.

• NAS-Bench-ASR [9] is a dataset with 8K architectures
of auto speech recognition models, trained on the TIMIT
audio dataset [5]. We transformed the dataset, which is
originally OOE-based, into the OON format.

• NAS-Bench-Graph [12] is a dataset with 26K archi-
tectures of graph neural networks, trained on the Cora
dataset [14]. Since the dataset is originally OON-based,
no additional transformation is required.

2. Experimental Details
2.1. Implementation details

In this subsection, we provide several implementation de-
tails of FLOWERFORMER.
Code implementation: We employed the framework of
GraphGPS [13] as the backbone to implement FLOWER-
FORMER with Python 3.10, Pytorch 1.13.1, and Pytorch
Geometric 2.2.0.
Obtaining representations in two-cell datasets: To ob-
tain representations in two-cell-based datasets (e.g., NAS-
Bench-301), we used the following projection strategy:

Let h1,o ∈ Rd and h2,o ∈ Rd denote the embeddings
of the output nodes of cell 1 and cell 2 after forward mes-
sage passing. Then, we concatenated h1,o and h2,o and pro-
jected the concatenated embeddings with a learnable pro-
jection matrix WP ∈ R2d×2d, as follows:

h′ = concat (h1,o, h2,o)W
P. (1)

Then, we split h′ ∈ R2d into two and regarded each split as
an embedding of the output nodes:

h1,o = (h′
1, h

′
2, · · · , h′

d), (2)
h2,o = (h′

d+1, h
′
d+2, · · · , h′

2d), (3)

where h′
i is the i-th entry of h′. Finally, we started asyn-

chronous backward message passing (step 3 in Algorithm 1
of the main paper) with updated h1,o and h2,o.
Training and hyperparameters: We used the AdamW op-
timizer [7] to train the models, and the best parameters were
selected using early stopping. The hyperparameter search
space was as follows:
• lr ∈ [10−4, 10−2]
• weight decay ∈ [10−10, 10−3]
• margin ∈ {0.01, 0.05, 0.1, 0.5, 1.0}
• L ∈ {4, 5, 6, 7, 8, 9, 10}
• d ∈ {64, 128, 256, 512}
• s ∈ {4, 8}
• dropout ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
Further details regarding hyperparameters, including the
best hyperparameter combination in each dataset, are avail-
able at http://github.com/y0ngjaenius/CVP
R2024_FLOWERFormer.

2.2. Batch operation

Asynchronous message passing inevitably introduces some
delay, since each operation should be performed in a se-
quential manner. In order to accelerate the computation,
we employed group-based batch processing. Specifically,
we used the topological batching strategy [2, 15], which is
specialized in handling asynchronous operations. First, we
grouped nodes that belong to the same topological gener-
ation and regarded each group as a single batch. Then, in-
stead of updating a representation of a single node at a time,
we updated representations of nodes that belong to the same
batch simultaneously. Note that this simultaneous update
process ensures the same result as updating each node in
a batch one by one since the updating processes of nodes
in the same topological generation are independent of each
other. In this manner, for a one-way message passing, we
performed |T G| operations, which is generally smaller than
the number of nodes.

2.3. Baseline methods

• GatedGCN [1] and GraphGPS [13]: We used the
GatedGCN implementation provided by the GraphGPS

http://github.com/y0ngjaenius/CVPR2024_FLOWERFormer
http://github.com/y0ngjaenius/CVPR2024_FLOWERFormer

repository. For GraphGPS, we used GatedGCN and Per-
former as the MPNN and attention modules, respectively.
We followed the choice used for OGBG-CODE2, which
is the only dataset modeled as a DAG in [13]. The GitHub
repository is https://github.com/rampasek/
GraphGPS

• DAGNN [15]: This model has a bidirectional option, and
we considered whether to use it or not as a hyperparame-
ter. The GitHub repository is https://github.com
/vthost/DAGNN

• DAGFormer [8]: DAGFormer introduces a framework
that is applicable to existing graph transformers, We used
the DAG+GraphGPS setting, which uses depth positional
encoding and replaces the attention module of GraphGPS
with reachability attention. The GitHub repository is ht
tps://github.com/LUOyk1999/DAGformer

• NAR-Former [16]: We followed the augmentation tech-
nique and hyperparameter setting of NAR-Former used in
[16] for each dataset. The GitHub repository is https:
//github.com/yuny220/NAR-Former

• TA-GATES [11]: We followed the hyperparameter set-
ting of TA-GATES used in [11] for each dataset. While
the NAS-Bench-ASR dataset is OOE-based with multi-
edges, the original TA-GATES implementation does not
support multi-edges. Therefore, we converted the dataset
into the OON format. The GitHub repository is https:
//github.com/walkerning/aw_nas

3. Additional Experiments and Results

3.1. Neural architectures search experiments

To validate the practical utility of FLOWERFORMER, we
conduct a series of Neural Architecture Search (NAS) ex-
periments. We employ NPENAS [4] as the backbone search
algorithm, using TA-GATES, DAGNN, NAR-Former, and
FLOWERFORMER as performance predictors. We follow
the experimental setup suggested in [4],with the modifica-
tion of conducting 100 trials. The results in Figure 1 sub-
stantiate FLOWERFORMER’s superior performance com-
pared to baseline methods.

3.2. Latency prediction experiments

To measure the encoding quality of FLOWERFORMER in
various aspects and validate its effectiveness, we conduct
a latency prediction experiment on NAS-Bench-201, com-
paring FLOWERFORMER with NAR-Former [16]. For this
comparison, we utilize Mean Absolute Percentage Error
(MAPE) and Error Bound Accuracy (Acc(δ)), the same
metrics employed by Yi et al. [16] for latency prediction.
As shown in Table 1, FLOWERFORMER outperforms NAR-
Former in the latency prediction task.

Figure 1. The average test error of the best neural architectures
obtained by the NPENAS algorithm using different performance
predictors on the NAS-Bench-101 dataset over 100 trials. The plot
shows that FLOWERFORMER consistently outperforms other pre-
dictors in achieving lower test error rates, establishing its superior-
ity in guiding the NAS process toward more accurate architectural
choices.

test architectures

te
st

 e
rr

o
r

o
f

b
e
st

 a
rc

h
it
e
ct

u
re

 (
%

)

Neural Architecture Search (NB 101)

FlowerFormer
TA-GATES
DAGNN
NAR-Former

Table 1. Mean Absolute Percentage Error (MAPE) and Error
Bound Accuracy (ACC) at δ (scaled up by a factor of 100, mean
over 9 trials) of latency prediction on the NAS-Bench-201 dataset.
In each setting, the best performances are highlighted in green.

Metric MAPE↓ ACC (δ = 0.1%) ↑ ACC (δ = 1%) ↑ ACC (δ = 5%) ↑
Training ratio 5% 10% 5% 10% 5% 10% 5% 10%

NAR-Former 3.1 3.0 2.3 2.3 21.9 22.9 80.8 82.2
FLOWERFORMER 1.1 0.9 8.6 12.7 67.2 78.3 97.4 97.0

3.3. Evaluation with additional metrics

To evaluate the superior performance of FLOWERFORMER
across different evaluation criteria, we examine perfor-
mance on NAS-Bench-101 using the Pearson Coefficient
of Linear Correlation (LC) and Root Mean Squared Error
(RMSE). As shown in Table 2, FLOWERFORMER shows
the best performance in all the settings.

Table 2. Linear Correlation (LC) and Root Mean Squared Error
(RMSE) (mean over 9 trials) on the NAS-Bench-101 dataset. In
each setting, the best performances are highlighted in green.

Metric LC↑ RMSE↓
Training ratio 1% 5% 10% 50% 1% 5% 10% 50%

DAGNN 0.4381 0.4919 0.5201 0.5876 0.0813 0.0802 0.0791 0.0755
TA-GATES 0.3303 0.3432 0.5087 0.5677 0.0834 0.0831 0.0803 0.0777
FLOWERFORMER 0.5636 0.6583 0.6605 0.7483 0.0768 0.0694 0.0670 0.0614

3.4. Extended evaluation on additional dataset

In this section, we analyze the performance of FLOWER-
FORMER on ENAS, an additional dataset consisting of two
cells. As shown in Table 3, FLOWERFORMER achieves
the second-best performance in the dataset. We hypothe-
size that the sub-optimal performance of FLOWERFORMER
stems from its failure to account for interactions between
two cells. Although there is information flow between two
cells, FLOWERFORMER lacks a dedicated global attention
module that can capture their interactions. This limitation
suggests that enhancing the global attention module to in-
corporate strategies like cross-attention could be a valuable
future research direction.

https://github.com/rampasek/GraphGPS
https://github.com/rampasek/GraphGPS
https://github.com/vthost/DAGNN
https://github.com/vthost/DAGNN
https://github.com/LUOyk1999/DAGformer
https://github.com/LUOyk1999/DAGformer
https://github.com/yuny220/NAR-Former
https://github.com/yuny220/NAR-Former
https://github.com/walkerning/aw_nas
https://github.com/walkerning/aw_nas

Table 3. Kendall’s Tau (scaled up by a factor of 100, mean over 9
trials) on the ENAS dataset. In each setting, the best performances
are highlighted in green.

Datasets ENAS Avg.
Training portions 1% 5% 10% 50% Rank

GatedGCN [1] 15.0 36.1 41.2 54.7 4.75
DAGNN [15] 31.0 47.0 52.6 61.3 1.25
GraphGPS [13] 6.9 26.5 34.2 51.2 6.00
DAGFormer [8] 12.2 41.4 46.5 57.9 4.25
TA-GATES [11] 22.9 45.2 49.4 61.2 2.50

FLOWERFORMER 18.8 44.3 49.5 64.7 2.25

References
[1] Xavier Bresson and Thomas Laurent. Residual gated graph

convnets. arXiv preprint arXiv:1711.07553, 2017. 1, 3
[2] Maxwell Crouse, Ibrahim Abdelaziz, Cristina Cornelio,

Veronika Thost, Lingfei Wu, Kenneth Forbus, and Achille
Fokoue. Improving graph neural network representations
of logical formulae with subgraph pooling. arXiv preprint
arXiv:1911.06904, 2019. 1

[3] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICLR,
2020. 1

[4] C. Wei et al. Npenas: Neural predictor guided evolution
for neural architecture search. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2022. 2

[5] John S Garofolo, Lori F Lamel, William M Fisher,
Jonathan G Fiscus, and David S Pallett. Darpa timit acoustic-
phonetic continous speech corpus cd-rom. nist speech disc
1-1.1. NASA STI/Recon technical report n, 93:27403, 1993.
1

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 1

[8] Yuankai Luo, Veronika Thost, and Lei Shi. Transformers
over directed acyclic graphs. In NeurIPS, 2023. 2, 3

[9] Abhinav Mehrotra, Alberto Gil CP Ramos, Sourav Bhat-
tacharya, Łukasz Dudziak, Ravichander Vipperla, Thomas
Chau, Mohamed S Abdelfattah, Samin Ishtiaq, and
Nicholas Donald Lane. Nas-bench-asr: Reproducible neural
architecture search for speech recognition. In ICLR, 2020. 1

[10] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and
Huazhong Yang. A generic graph-based neural architecture
encoding scheme for predictor-based nas. In ECCV, 2020. 1

[11] Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao,
Yiping Deng, Changcheng Tang, Shuang Liang, Huazhong
Yang, and Yu Wang. Ta-gates: An encoding scheme for neu-
ral network architectures. In NeurIPS, 2022. 1, 2, 3

[12] Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, and
Wenwu Zhu. Nas-bench-graph: Benchmarking graph neu-
ral architecture search. In NeurIPS, 2022. 1

[13] Ladislav Rampášek, Michael Galkin, Vijay Prakash
Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini.
Recipe for a general, powerful, scalable graph transformer.
In NeurIPS, 2022. 1, 2, 3

[14] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,

Brian Galligher, and Tina Eliassi-Rad. Collective classifica-
tion in network data. AI magazine, 29(3):93–93, 2008. 1

[15] Veronika Thost and Jie Chen. Directed acyclic graph neural
networks. In ICLR, 2021. 1, 2, 3

[16] Yun Yi, Haokui Zhang, Wenze Hu, Nannan Wang, and Xi-
aoyu Wang. Nar-former: Neural architecture representation
learning towards holistic attributes prediction. In CVPR,
2023. 2

[17] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, 2019. 1

[18] Arber Zela, Julien Siems, Lucas Zimmer, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Surrogate nas bench-
marks: Going beyond the limited search spaces of tabular
nas benchmarks. In ICLR, 2022. 1

	. Dataset description
	. Experimental Details
	. Implementation details
	. Batch operation
	. Baseline methods

	. Additional Experiments and Results
	. Neural architectures search experiments
	. Latency prediction experiments
	. Evaluation with additional metrics
	. Extended evaluation on additional dataset

