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We provide additional details and analyses of the pro-
posed method in this supplementary material. Section A
provides detailed algorithm and theoretical analyses for
group trajectory comparison. Section B provides imple-
mentation details and experiment settings. Section C pro-
vides evaluation results for RoboTHOR with detailed analy-
ses on both ProcTHOR and RoboTHOR experiments. Sec-
tion D provides implementation details and detailed results
for the ablation study.

A. Group Trajectory Comparison

A.1. Algorithm

Algorithm 1 summarizes the reward weight prediction pro-
cess from preference feedback on group trajectory compar-
isons. Suppose we are analyzing human preferences be-
tween two groups of weights in a simplex ∆K . The groups
are defined as G1 = {w | a⊺w > b + 1} ⊆ ∆K

and G2 = {w | a⊺w < b} ⊆ ∆K , where a ∈ RK

and b ∈ R. Suppose we collect two groups of trajecto-
ries corresponding to G1 and G2 as Ti = {{τi,j}Mj=1 |
τi,j ∼ π(·|w) s.t. w ∼ Unif(Gi)} for ∀i ∈ {1, 2} where
M = |T1| = |T2|. We define group preference that G1

is preferred to G2 if |{τ1,j ≻ τ2,j}| > αM , where M is
the size of T1 and T2, τi,j ∈ Ti is a trajectory generated
with a reward weight vector from Gi in the jth episode, and
α ≥ 1/2 is a threshold that determines the group prefer-
ence. As described in Algorithm 1, we eliminate the vol-
ume corresponding to G2 if the human prefers G1 over G2.
Conversely, if G2 is preferred over G1, the volume in G1

is removed. This process is repeated for multiple iterations
and we perform constrained optimization to find the reward
weight vector from the left weight space that maximizes the
likelihood of group preference.

A.2. Theoretical Analyses

For theoretical analysis, we assume the well-constructed set
of trajectory pairs {τ1,i, τ2,i}Mi=1 with a specific reward vec-
tor so that τ1,i can be regarded as a trajectory sampled from

w in G1, and τ2,i can be regarded as a trajectory sampled
from w in G2. This is not exactly the same as the sampling
we did in Algorithm 1, where we uniformly sample w from
each group Gi. The justification for this assumption will be
thoroughly detailed in this section.

Construction of trajectory pair set. We will con-
struct and present pairs of trajectories, denoted as
{(τ1,i, τ2,i)}Mi=1, where M represents the number of pairs
in the group comparisons. For each trajectory τj,i, it is as-
sociated with a reward, denoted as rj,i,k. Here, k ∈ [K]
specifies the kth objective, j = 1, 2 indicates the first or
second component of each pair, and i ∈ [M ] corresponds to
the ith pair in the group comparison data. Then, if a human
prefer τip,i to τ3−ip,i for every i ∈ [M ], (i.e., ip is the index
of preferred group for ith pair, which is 1 or 2),

P ({τip,i ≻ τ3−ip,i}Mi=1)

=

M∏
i=1

exp(w∗⊺r(τip,i))

exp(w∗⊺r(τip,i)) + exp(w∗⊺r(τ3−ip,i))
(1)

holds due to the Bradley-Terry Model. Since we can con-
struct τi (as we have a lot of trajectories), we that r2,i,k −
r1,i,k = ciak − ci

b1+b2
2 for all i ∈ [M ], k ∈ [K]. Without

loss of generality, we set b1 − b2 = 0.5. We also set ci as
a constant 1.4/(b1− b2). Then, Equation (1) can be written
as

P ({τip,i ≻ τ3−ip,i}Mi=1)

=

M∏
i=1

1

1 + exp((−1)111(ip=1)ci(w∗⊺a− b1+b2
2 )

. (2)

Here, Equation (2) holds due to dividing Equation (1)’s de-
nominator and numerator by exp(w∗⊺r(τip,i)).

The justification for the assumption. A careful con-
struction of r1,i and r2,i indicates that if w⋆ ∈ G1, i.e.
w⋆a > b1, P (τ1,i ≻ τ2,i) = 1

1+exp(−ci(w∗⊺a− b1+b2
2 )

>
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Algorithm 1: Group Trajectory Comparison with Probabilistic Rejective Sampling

Require: # Queries: N , Rejection Probability: 1− δ;
# Objectives: K, # Trajectories per Group: M ;
Initialize: Preference Buffer D ← ∅, Constraint Buffer C ← ∅
for n = 1 to N do

// Sample two groups of weights Gn
1 , G

n
2 from the set of all possible weights ∆K

// Generate M trajectories for each group using the weights in the group
// Calculate sub-rewards for 2 ·M trajectories across K objectives
Rn

i ←[r(τ i1),...,r(τ
i
M )] s.t. τ ij∼π(·|w),w ∈ Gn

i ;
// Ask the user to give a preference label for these two groups
yn ← preference label for pair (Gn

1 , G
n
2 )

// Determine an inequality constraint based on the user’s preference
Choose an ∈ RK , cn ∈ RK , bn ∈ R s.t. Rn

2 −Rn
1 = ancn

⊺ − (bn + 0.5)1cn
⊺

if User prefers the first group then
Ensure the probability of this preference being correct is above the threshold δ

else
Ensure the probability of the opposite preference being correct is above the threshold δ

end
// Update Preference Buffer with the user’s choice
D ← D ∪ ((σn, σn+1), yn)
// Update Constraint Buffer with the new constraint
C ← C ∪ {a⊺nw < b2}

end
Constrained Optimization:
// Maximize the expected likelihood of the user’s preferences being correct, considering all constraints
max
w∈∆K

E[logP (yn|Gn
1 , G

n
2 ;w)] s.t. w ∈ ∩Nn=1Ci

1/2, which says that the possibility of preferring τ1,i to τ2,i
is larger than preferring τ2,i to τ1,i. In the same way, if
w⋆ ∈ G2, then they will probably more prefer τ2,i to τ1,i.
Therefore, we can regard preferring τj,i to τ3−j,i as prefer-
ring j to 3 − j. In this line, we assume that group g will
be said as preferred if |{τg,i ≻ τ3−g,i}Mi=1| ≥ αM where
α > 1/2.
Probabilistic Guarantee. Theorem 1 shows that with a
sufficiently large group size, group comparison can achieve
a probabilistic guarantee of predicting group preference
with an error less than δ.

Theorem 1. If M ≥ − log δ−1/2
α(1+0.25c)−1−(1−α) log(1−α) holds,

P (G2 ≻ G1 | w∗ ∈ G1) ≤ δwith probability at least1− δ.

Proof. We will use the trajectory pairs defined in the afore-
mentioned section. For each comparison between groups,
we can decide the values of a and b1, b2, thereby shrink-
ing the domain of possible w values in ∆K using a specific
affine hyperplane. Iteratively employing these group com-
parisons will provide a high confidence level in determining
the real value of w∗.
Assume w⋆ ∈ G1, but the case that human will select G2 is

P (G2 ≻ G1 | w⋆ ∈ G1) = Pw∗(|{τ2,i ≻ τ1,i}Mi=1| ≥ αM)

=
∑

k≥αM

(
M
k

)(
1

1 + exp(ci(w∗⊺a− b1+b2
2 )

)k

(
1

1 + exp(−ci(w∗⊺a− b1+b2
2 )

)M−k

≤
∑

k≥αM

(
M
k

)(
1

1 + exp(ci
b1−b2

2 )

)αM

(
1

1 + exp(ci
b2−b1

2 )

)M−αM

(3)

≤ MM−αM+1

e
√
M − αM

(
M−αM

e

)M−αM

(
1

1 + exp(c b1−b2
2 )

)αM

(
1

1 + exp(c b2−b1
2 )

)M−αM

(4)

≤ exp

(
M − αM − b1 − b2

2
cαM +

1

2

)
/(1− α)M−αM

≤ δ

if M ≥ − log δ−1/2

α(1+ b1−b2
2 c)−1−(1−α) log(1−α)

holds, so we can

get exponentially small error rate with respect to M . Here,



Equation (3) used that b1 − b2 > 0, Equation (4) used(
M
k

)
≤
(

M
αM

)
and using Stirling formula of

(
M
αM

)
.

Since ci >
2−log(2)
b1−b2

and 1+(1−α) log(1−α)
α < 2− log(2) for

any α > 1
2 , α

(
1 + b1−b2

2 c
)
− 1− (1− α) log(1− α) > 0.

Suppose the threshold of group preference α = 2/3 and we
want an accuracy of δ = 0.05. Then, P (G2 ≻ G1 | w∗ ∈
G1) ≤ 0.05 if M > 4.996. This theoretical analysis implies
that we can efficiently remove a volume of the weight space
by rejecting highly unprobable weights. We can do the same
analysis for P (G1 ≻ G2 | w∗ ∈ G2). Therefore, even if we
have a small M , we can efficiently make the error smaller,
which means that group comparison accurately removes the
volume.

B. Experiment Setup
B.1. Implementation Details

The agent observes an RGB image observation with a field
of view of 63.453◦ at each timestep. We define the time effi-
ciency reward as a negative constant value at each timestep,
fixed as −0.01 for all experiments. The path efficiency re-
ward is defined as max(dt−1, dt), where dt is the distance
from the agent’s current location to the target location and
dt−1 is the distance from the agent to the target location
at the previous timestep. House exploration reward con-
siders the navigation history, by encouraging the agent to
visit new areas with its corresponding reward as a constant
rhouse explore if the agent is visiting its current location for
the first time and the target object is not observed yet. If
the target object is observed or the agent revisits a location,
the house exploration reward is 0. rhouse explore is 0.1 for
all experiments. The object exploration reward is calculated
by counting the number of observed objects, where the re-
ward is defined as robject found ∗nnew visible/ntotal, where
robject found is a constant 4.0, nnew visible is the number of
objects newly observed at the current timestep, and ntotal

is the number of all objects in the environment. Safety re-
ward is defined as −rsafety · nunreachable if the target ob-
ject is not visible in current observation and 0 otherwise,
where rsafety is 0.005. The number of unreachable loca-
tions near the agent nunreachable is higher than a threshold
nsafety threshold. We draw a square grid of size 13 × 13
with the agent’s current location in the center of the grid
and a distance 0.25m unit grid size. Contrary to the sub-
rewards for preference objectives that can be scaled with
reward weights, we use a default success reward for Object-
Nav to encourage the agent to find the target object. The de-
fault success reward is set to 10.0 when the agent identifies
the target object for the first time and 0 otherwise. During
training, we add the default success reward to the weighted
sum of sub-rewards for preference objectives.

B.2. List of Scenarios

• Urgent: The user is getting late to an important meeting
and needs to quickly find an object in the house.

• Energy Conservation: The user wants to check an ap-
pliance in the house while the user is away, but the robot
that has a limited battery life.

• New Home: The user just moved in and wants to find
which furniture or object is located while inspecting the
layout of the house as a video.

• Post-Rearrangement: After rearranging the house, the
user does not remember where certain objects were
placed. The user wants to find a specific object, while also
inspecting other areas to confirm the new arrangement.

• Quiet Operation: At midnight, the user wants to find
an object in the house without disturbing a sleeping child
with any loud noise.

B.3. Language Instruction Templates.

The input template for the language model is as follows:

{Task Description}
Objectives are {Definitions}.
Given an instruction, I want to know the weights
over the {K} objectives {Names of Objectives}.
The weights should be spiked, meaning that the
weight of the most important objective should be
much higher than the weight of the least important
objective.

Here are some examples.
1. Instruction: I want the agent to explore ...

Rationale: The instruction describes that ...
Answer: [0.05,0.1,0.65,0.1,0.1]

...

Instruction: {Instruction}
Rationale:
Answer:

For ObjectNav, we provide the following template:

"""
In the object-goal navigation task in ProcTHOR,
an agent is placed within a simulated environment
containing various rooms and objects. The
agent’s main goal is to find a specific object
in this environment. To assist the agent in its
navigation, it can be given different objectives
that determine how it behaves during its search.

Objectives are:
1. Time Efficiency: Aim to find the target object
using as few steps as possible.
2. Path Efficiency: Approach the goal using the
most direct route. Consider if you’re taking the
shortest possible path.
3. House Exploration: Strive to explore the house
thoroughly. This involves checking many different
areas/rooms until you locate the target object.
4. Safety: Navigate while avoiding obstacles and
areas where you could get trapped or stuck.



5. Object Exploration: While finding the target
object, try to inspect as many objects as you
encounter.

Given a scenario, I want to know the weights
over the five objectives (Time Efficiency, Path
Efficiency, House Exploration, Safety, Object
Exploration).
The weights should be spiked, meaning that the
weight of the most important objective should
be much higher than the weight of the least
important objective.
The answer should be a list of five float
numbers, summed to 1.

Here are some examples.
1. Scenario: My kid is asleep. Navigate to an
apple in the kitchen without making any noise."

Rationale: Based on the scenario, the agent
should prioritize safety the most, assigning 0.6.
Other objectives are not mentioned, assigning
(1-0.6)/4=0.1 for each objective.

Answer: [0.1,0.1,0.1,0.6,0.1]
2. Scenario: I am in hurry. I want to find an
object before I am late for work.

Rationale: Based on the scenario, time
efficiency is the most important, assigning 0.6.
Other objectives are not mentioned, assigning
(1-0.6)/4=0.1 for each objective.

Answer: [0.6,0.1,0.1,0.1,0.1]
3. Scenario: I want to find a missing object in
my house. I looked into every room briefly but I
couldn’t find it.

Rationale: Based on the scenario, the agent
should explore the house thoroughly, assigning
0.4 for both house exploration and object
exploration. Other objectives are not mentioned,
assigning (1-0.4-0.4)/3=0.067 for each objective.

Answer: [0.067,0.067,0.4,0.067,0.4]
4. Scenario: I bought an expensive furniture in
my house. I want to find an object, but I don’t
want to damage the furniture.

Rationale: Based on the scenario, the agent
should prioritize safety the most, assigning 0.6.
Other objectives are not mentioned, assigning
(1-0.6)/4=0.1 for each objective.

Answer: [0.1,0.1,0.1,0.6,0.1]
5. Scenario: I’m recording a video in the living
room. While I’m working on this, I want the agent
to find an object for me. I don’t want the agent
to move around too much since it might be too
noisy and appear a lot in the video.

Rationale: Based on the scenario, the
agent should prioritize path efficiency and
time efficiency, assigning 0.4 for each.
Other objectives are not mentioned, assigning
(1-0.4-0.4)/3=0.067 for each objective.

Answer: [0.4,0.4,0.067,0.067,0.067]
6. Scenario: I will have a home party this week,
but can’t find where I put the vase to put on the
table. I want to find it surely by today. I have
enough time, so I just want the robot to find it.

Rationale: Based on the scenario, the agent
should prioritize house exploration the most,
assigning 0.6. Object exploration is also
important, assigning 0.3. Other objectives are
not mentioned, assigning (1-0.6-0.3)/3=0.033 for

each objective.
Answer: [0.033,0.033,0.6,0.033,0.3]

Scenario: {}
Rationale:
Answer:
"""

The test instructions are as follows:

instructions = [
"I’m getting late to an important
meeting. I need to quickly find an
object in the house.",
"I want to check an appliance in the
house while I’m away, but I forgot to
charge the robot last night. It seems
that the robot that has a limited
battery life, so I don’t want the
robot to waste time while looking into
unnecessary regions.",
"I just moved in and want to find which
furniture or object is located while
inspecting the layout of the house as a
video.",
"After rearranging the house, I can’t
remember where certain objects were
placed. I want to find a specific
object, while also inspecting other
areas to confirm the new arrangement.",
"My house has lots of valuable and
fragile artifacts. I want to find a
special-edition item among those.",
"It’s in the midnight, and I want to
find an object in the house without
making any loud noise. I don’t want to
disturb my child who is sleeping.",
]

For FleeNav, we use the following template:

"""
In the flee navigation task in ProcTHOR, an agent
is placed within a simulated environment with
the aim to move as far away as possible from its
starting position. The task tests the agent’s
ability to maximize the distance from its initial
location while considering various objectives
that determine its behavior.

Objectives are:
1. Time Efficiency: Aim to find the target object
using as few steps as possible.
2. House Exploration: Strive to explore the house
thoroughly. This involves checking many different
areas/rooms until you find the farthest point
from the agent’s initial location.
3. Safety: Navigate while avoiding obstacles and
areas where you could get trapped or stuck.



Method Multi-Objective Prioritized
Objective Success SPL Distance

to Goal
Episode
Length Sub Rewards ↑

↑ ↑ ↓ ↓ Time Efficiency Path Efficiency House Exploration Object Exploration Safety

Promptable
Behaviors

(Ours)
Single-Policy

a - 0.470 0.190 1.632 182.540 -1.825 1.179 3.370 2.095 -3.162
b Time Efficiency 0.410 0.185 1.736 156.470 -1.565 0.959 3.112 2.066 -1.500
c Path Efficiency 0.420 0.164 1.656 199.330 -1.993 1.279 3.452 2.131 -1.488
d House Exploration 0.480 0.184 1.558 183.340 -1.833 1.193 3.681 2.125 -1.885
e Object Exploration 0.480 0.207 1.643 182.070 -1.821 1.246 3.534 2.137 -1.573
f Safety 0.450 0.175 1.629 156.770 -1.568 1.247 3.122 2.098 -1.485

Table 1. Performance in RoboTHOR ObjectNav. We evaluate each method in the validation set with five different configurations
of objective prioritization: uniform reward weights among all objectives and prioritizing a single objective 10 times as much as other
objectives. Sub-rewards for each objective are accumulated during each episode, averaged across episodes, and then normalized using the
mean and variance calculated across all methods. Colored cells indicate the highest values in each sub-reward column.

Method Multi-Objective Prioritized
Objective Success PLOPL Distance

to Furthest
Episode
Length Sub Rewards ↑

↑ ↑ ↓ ↓ Time Efficiency House Exploration Safety

Promptable
Behaviors

(Ours)
Single-Policy

a - 0.876 0.950 3.360 57.560 0.784 0.629 0.688
b Time Efficiency 0.890 0.946 3.501 56.030 0.920 0.053 0.367
c House Exploration 0.902 0.954 3.017 59.320 0.627 0.907 0.932
d Safety 0.854 0.946 3.630 63.890 0.220 0.730 0.934

Table 2. Performance in RoboTHOR FleeNav. We evaluate each method in the validation set with four different configurations of
objective prioritization: uniform reward weight across all objectives and prioritizing a single objective 10 times as much as other objectives.
Sub-rewards for each objective are accumulated during each episode, averaged across episodes, and then normalized using the mean and
variance calculated across all methods. Colored cells indicate the highest values in each sub-reward column.

Given an instruction, I want to know the weights
over the four objectives (Time Efficiency, House
Exploration, Safety).
The weights should be spiked, meaning that the
weight of the most important objective should
be much higher than the weight of the least
important objective.

Here are some examples.
1. Instruction: Prioritize getting as far from
your starting point as possible, regardless of
the number of steps.

Rationale: The instruction describes that time
efficiency is the least important, assigning 0.2.
House exploration and safety are not mentioned
but should be important than time efficiency, so
they are assigned 0.4 each.

Answer: [0.2,0.4,0.4]
2. Instruction: Explore the environment
thoroughly while avoiding colliding to walls
and obstacles.

Rationale: The instruction describes that
house exploration is the most important,
assigning 0.5. Safety is the second priority,
assigning 0.4. Time efficiency is not mentioned,
so it is assigned 0.1.

Answer: [0.1,0.5,0.4]
3. Instruction: Your main goal is to explore
while distancing from the start.

Rationale: The instruction describes that
house exploration is the most important,
assigning 0.6. Safety and time efficiency are
not mentioned, so they are assigned 0.2 each.

Answer: [0.2,0.6,0.2]
4. Instruction: Safety is key. Move away, but
avoid any and all obstacles.

Rationale: The instruction describes that
safety is the most important, assigning 0.6.
House exploration and time efficiency are not

mentioned, so they are assigned 0.2 each.
Answer: [0.2,0.2,0.6]

5. Instruction: Avoid taking too many steps.
Rationale: The instruction describes that time

efficiency is the most important, assigning 0.6.
House exploration and safety are not mentioned,
so they are assigned 0.2 each.

Answer: [0.6,0.2,0.2]
6. Instruction: Prioritize safety first, then
exploration.

Rationale: The instruction describes that
safety is the most important, assigning 0.6.
House exploration is the second important,
assigning 0.4. Time efficiency is not mentioned,
so it is assigned 0.0.

Answer: [0.0,0.4,0.6]

Instruction: {}
Rationale:
Answer:
"""

B.4. Human Evaluation Details

For human evaluation, we asked five participants to evaluate
trajectories generated by the agent policy, conditioned on
the predicted reward weights. Specifically, in each compar-
ison, given a language instruction that described the user’s
situation, the participant had to choose the more preferred
trajectory from a pair of trajectories. Each participant ob-
served 50 pairs of trajectories for each weight prediction
method in Table 4 in the main paper. For statistical testing,
we performed a paired t-test, and the average p-value was
calculated to be 0.021.
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Figure 1. Pareto front plots in ProcTHOR ObjectNav. We plot the Pareto front on four different combinations of objective pairs in
ProcTHOR ObjectNav. Data samples are generated with five different reward configurations, each prioritizing a single objective 4 times
more than other objectives. Each data point corresponds to a sample with rewards on two objectives. Rewards are normalized for each
objective.

C. Additional Results and Analyses
In this section, we provide experiment results for
RoboTHOR ObjectNav and FleeNav. Additionally, we vi-
sualize trajectories for numerous episodes and analyze those
qualitatively. Lastly, detailed analyses for reward weight
prediction experiments are provided.

C.1. RoboTHOR Experiment Results

RoboTHOR ObjectNav. Results in Table 1 show that the
proposed Promptable Behaviors outputs different agent be-
haviors and performances based on the prioritization of ob-
jectives. Regarding the general performance, prioritizing
house exploration or object exploration shows the highest
success rate of 48.0%. When time efficiency is prioritized
(row b in Table 1), the agent achieves % higher time ef-
ficiency reward compared to the case when no objective is
prioritized (row a in Table 1). Similarly, prioritizing a single
objective improves the corresponding sub-reward.
RoboTHOR FleeNav. Results in Table 2 also show that our
method can effectively prompt agent behaviors by adjust-
ing the reward weights across multiple objectives. Among
all reward weight configurations, prioritizing house explo-
ration shows the highest success rate. When safety is prior-
itized, the agent shows a higher safety reward compared to
all other reward weight configurations.

C.2. Pareto Front Analysis

Efficiency and house exploration are conflicting objec-
tives. Pareto front plots in Figure 1 (a) and (b), and Figure 2
show that time efficiency and path efficiency are conflicting
objectives. Comparing Figure 1 (a) and (b), path efficiency
could be interpreted as more conflictive against house ex-
ploration since the area below the Pareto front in (b) is larger
than the area in (a). Interestingly, Figure 1 (d) illustrates a
nearly convex Pareto front when time efficiency and path ef-
ficiency are compared. This implies that although time effi-
ciency and path efficiency both aim efficiency on the agent’s
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Figure 2. Pareto front comparing time efficiency and house ex-
ploration in ProcTHOR FleeNav. We plot the Pareto front in
ProcTHOR FleeNav comparing time efficiency and house explo-
ration. Data samples are generated with three different reward con-
figurations, each prioritizing a single objective 3 times more than
other objectives. Each axis denotes the reward for the correspond-
ing objective and the rewards are normalized following Table 1.

behavior, a notable difference exists between these two ob-
jectives. Comparing safety with path efficiency in Figure 1
(c), the Pareto front is illustrated as a concave curve. Com-
paring the curve with the Pareto front in Figure 1 (b), path
efficiency is more conflictive with house exploration than
safety.

C.3. Trajectory Visualizations

We visualize trajectories to compare how agent behaviors
are different when different objectives are prioritized.
Time efficiency saves time. Figure 3 (a), Figure 4, Figure 6
(a), and Figure 5 shows that within the same episode, the
agent finds the target object faster when time efficiency is
prioritized than other objectives. In Figure 3 (a), the agent
that prioritizes time efficiency directly gets out of a room
and finds the target object earlier than the case when house
exploration is prioritized. Even comparing time efficiency
against path efficiency in Figure 4, prioritizing time effi-
ciency encourages the agent to find the target object earlier.
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Figure 3. Comparing House Exploration with other objectives. We compare agent trajectories when house exploration is prioritized
with when one of three objectives (time efficiency, path efficiency, and safety) is prioritized.

Notably, we found that time efficiency and path efficiency
are correlated but different in some cases. As shown in Fig-
ure 4 (a), prioritizing path efficiency often causes more rota-
tion actions than prioritizing time efficiency. This could be
because changing the agent’s orientation can help the agent
find shorter paths. Figure 4 describes another difference:
prioritizing path efficiency encourages the agent to move
closer to a corner of the wall. This could be due to the nature
of calculating the geodesic shortest path since the shortest
path is usually a series of straight-line segments that connect
corner places in the environment. In Figure 5, prioritizing
time efficiency results in a shorter path than prioritizing ob-
ject exploration. These results imply that the agent learns to
finish the episode faster when time efficiency is prioritized.
House exploration enables the agent to explore the house
thoroughly. Figure 3 visualizes how agent trajectories are
changed when house exploration is prioritized. In Figure 3
(a), compared to the trajectory that prioritizes time effi-

ciency, the agent prioritizing house exploration explores the
room more before getting out of the room. Similarly, Fig-
ure 3 (b) illustrates an episode where the agent explores
more when house exploration is prioritized than when path
efficiency is prioritized. In Figure 3 (c), the agent visited
more rooms when house exploration is prioritized, com-
pared to the case when safety is prioritized. These qualita-
tive results demonstrate the effectiveness of Promptable Be-
haviors that prioritizing house exploration encourages the
agent to explore the house thoroughly.
Object exploration encourages the agent to inspect more
objects. Figure 5 visualizes the RGB observations with ob-
jects detected in each trajectory. The figure shows that pri-
oritizing object exploration makes the agent inspect objects
more in detail, often encouraging getting close to the ob-
served objects. For instance, the agent observed a bed, a
chair, and a cabinet closer than the trajectory that prioritizes
time efficiency. Also, the agent changed the orientation of
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Figure 4. Time Efficiency vs. Path Efficiency. We compare agent trajectories when time efficiency is prioritized and when path efficiency
is prioritized in the same episode. Both episodes in (a) and (b) show that prioritizing time efficiency encourages the agent to end the episode
faster than prioritizing path efficiency. Prioritizing path efficiency showed interesting behaviors, such as performing more rotation actions
in (a) and moving closer to the wall in (b), compared to prioritizing time efficiency.
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Figure 5. Time Efficiency vs Object Exploration. We compare agent trajectories when time efficiency is prioritized with when object
exploration is prioritized. Blue boxes denote objects detected in each image and yellow box describes the bounding box of the target object.
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Figure 6. Comparing Safety with other objectives. We compare agent trajectories when safety is prioritized with when one of three
objectives (time efficiency, path efficiency, and house exploration) is prioritized. (a) The agent collides with an obstacle when time
efficiency is prioritized the most. When safety is prioritized, the agent does not collide with any object and smoothly finds the target object.
(b) When path efficiency is prioritized, the agent follows a direct but narrower route compared to the case when safety is prioritized. (c)
In this episode, multiple objects corresponding to the target object category exist in the house. The agent gets stuck on a doorframe when
house exploration is prioritized, while the agent smoothly passes the door when safety is prioritized.



the view by performing LookUp and LookDown actions
before leaving the room when object exploration is priori-
tized. In contrast, the agent prioritizing time efficiency did
not perform any LookUp or LookDown actions and got
out of the room in an earlier timestep.
Safety avoids colliding with objects, doors, and walls.
Figure 6 describes agent trajectories that prioritize safety
or one of three objectives (time efficiency, path efficiency,
and house exploration). In Figure 6 (a), prioritizing time ef-
ficiency resulted in a collision between the agent and an ob-
stacle in the middle of a room, while the safety-prioritized
agent did not collide with any objects. In Figure 6 (b), the
agent prioritizing safety took a detour but a wider route to
move towards the target object, while the agent prioritizing
path efficiency followed a direct and narrower route. In Fig-
ure 6, the agent prioritizing house exploration got stuck on
a doorframe for 20 timesteps, while the safety-prioritized
agent did not get stuck in any places. These results im-
ply that the agent learns to avoid colliding with objects and
places that could potentially make the agent get stuck.
Our agent covers various combinations of preference
objectives. Although we primarily evaluate the policy
based on cases where a single objective is prioritized, our
policy can handle any combination of objectives in the re-
ward weight space. Since we randomly sample the re-
ward weights during training, the policy has the capability
to cover various combinations of objectives, corresponding
to diverse preferences of multiple users. In contrast, Pri-
oritized EmbCLIP learns a set of policies focusing on one
objective per policy and therefore can only generate a sin-
gle agent behavior at a time. Our method is more flexible:
rather than choosing just one objective, weighting across
possible objectives enables the agent to cover a broader
range of human preferences over agent behaviors.

C.4. Reward Weight Prediction

Table 3 shows the full results of reward weight prediction
experiments. Group trajectory comparison when M = 5
aligns with the probabilistic guarantee of group preference
with an error less than δ = 0.01, resulting in 86.2% predic-
tion accuracy with only 10 group comparisons. The results
show that group trajectory comparison with M = 5 and
10 feedback shows a similar performance of pairwise tra-
jectory comparison with 500 feedback. This implies that
group trajectory comparison effectively reduces human ef-
fort on providing preference feedback. Comparing Chat-
GPT [1] and Llama-2-70B [2], Llama-2-70B model gener-
ated more peaked reward weights compared to ChatGPT,
while the prediction accuracy was higher using ChatGPT.

D. Ablation Study
Is Codebook Effective in MORL? We examine the ef-
fectiveness of the codebook module for encoding reward

Weight Prediction Methods Acc. ↑ GGI ↑Input Model N
Human Demonstrations - 1 0.707 0.347

Preference Feedback

Pairwise
Comparison
(M=1)

10 0.369 0.800
20 0.356 0.800
50 0.358 0.800

100 0.505 0.800
200 0.587 0.800
500 0.897 0.800

Group
Comparison
(M=2)

5 0.689 0.626
10 0.793 0.618
25 0.935 0.657

Group
Comparison
(M=5)

2 0.722 0.634
4 0.682 0.762

10 0.862 0.641

Language Instructions

ChatGPT 1 0.530 0.388
w/ ICL 1 0.529 0.379
w/ CoT 1 0.614 0.391
w/ ICL + CoT 1 0.482 0.347

Llama-2-70B 1 0.314 0.608
w/ ICL 1 0.360 0.675
w/ CoT 1 0.313 0.582
w/ ICL + CoT 1 0.287 0.568

Table 3. Comparison of Three Weight Prediction Methods. We
predict the optimal reward weight vector from the collected human
demonstrations, preference feedback on trajectory comparisons,
and language instructions. For trajectory comparison methods, the
total number of observed trajectories is 2NM . mention tha tthis
is objectnav
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Figure 7. Training Curves with Different Weight Embedding
Methods in ProcTHOR ObjectNav. We compare three weight
embedding methods: raw, lookup table, and codebook.

weight vector in MORL. The training curves, shown in Fig-
ure 7, illustrate that using codebook results in a more sta-



Method Input Type Input Range Success ↑ SPL ↑
Raw Conti. [0.0, 1.0] 0.393 ± 0.064 0.259 ± 0.020

Lookup Table Discrete [0, 10] 0.409 ± 0.007 0.284 ± 0.003
Codebook (Ours) Conti. [0.0, 1.0] 0.396 ± 0.027 0.298 ± 0.022

Table 4. Comparison of Reward Weight Encoding Methods.
We evaluate each method in the validation set with 11 different
configurations of objective prioritization: uniform reward weights
among all objectives, prioritizing a single objective 4 times as
much as other objectives, and prioritizing a single objective 10
times as much as other objectives.

ble performance compared to using a lookup table extended
from [3] and using raw reward weight vectors without en-
coding. After training with each reward weight encoding
method for 50M steps, we evaluate the agent with 11 dif-
ferent reward configurations, as described in Table 4. The
proposed encoding method using codebook improved the
average success rate by 0.76% and the standard deviation
of success rate by 57.8% compared to using raw reward
weight vectors without encoding. This indicates that the
training process is stabilized through the codebook module.
While the lookup table method did exhibit a higher average
success rate and SPL than using codebook, we address that
using integer weights to represent reward configurations has
a critical limitation: ambiguity in the reward weight pre-
diction phase. For instance, different integer weight vec-
tors like [4, 1, 1, 1, 1] and [8, 2, 2, 2, 2] may represent identi-
cal preferences, leading to multiple potential solutions and
complicating the inference of optimal reward weights from
human preferences. In contrast, our method represents hu-
man preferences using continuous real-values weight vec-
tors, such as [0.5, 0.125, 0.125, 0.125, 0.125].
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