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Supplementary Material

In Appendix A, we present more details on our exper-
imental setup to ease reproduction of our work. In Ap-
pendix B, we provide additional experimental results to
evaluate our model and compare to prior work.

A. More details on the experimental setup

In Table S1 we provide the links to the datasets and models
used in our work and their licensing.

A.1. Architecture details

Generator. As can be seen in Figure 3 of the main pa-
per, our generator consists of a UNet-like architecture with
two pyramidal paths. The label map encoding takes the in-
put segmentation map, and progressively downsamples it to
produce label-conditioned multi-scale features. These fea-
tures are then used in the image generation path, which pro-
gressively upsamples the signal to eventually produce an
RGB image. The stochasticity of the images generated is
based on conditioning on the noise vector z. We provide a
schematic overview of the noise injection operation in Fig-
ure S1. Notably, we follow [27] and normalize every noise
vector to the unit sphere before feeding it to the generator
z̃ = z

∥z∥2
. In Table S2, we provide additional information

on the label map encoding and the image generation paths.
In the label map encoding branch, each block is made of

the elements listed in Table S2. Cross-attention and self-
attention are only applied at lower resolutions (64×64, and
lower) where we use an embedding dimension that is half
of the original feature dimension. We downscale the feature
maps by using convolution layers with a stride of 2.

In the image synthesis branch, we follow the same ar-
chitecture as OASIS [52] with the only difference being the
SPADE conditioning maps which are given by the label map
encoding path instead of a resized version of the label maps.
We also remove the hyperbolic tangent at the output of the
network as we found it leads to a more stable generator.

For the contrastive learning branch, features obtained
from VGG19 go through three convolutional blocks and
two linear layers for projection. We sample 128 different
patches to obtain negative samples from the image.

Discriminator. We provide additional details of our dis-
criminator architecture in Table S3. The residual blocks
are made of one convolution with kernel size 3 followed
by leaky ReLU, then a pointwise convolution with leaky
ReLU. For the full resolution channel, we set the dimen-
sionality to 128. For the lower resolution channels, we stick
to the same dimensionality as the corresponding encoder

feature. The dimensionality of the final convolution before
predicting the segmentations is set to 256.

We use spectral norm on all convolutional and linear lay-
ers in both the generator and the discriminator.

Feature conditioning. In [51] the authors observe that
when using a fixed feature encoder in the GAN discrimi-
nator, only a subset of features is covered by the projec-
tor. They therefore propose propose to dilute prominent fea-
tures, encouraging the discriminator to utilize all available
information equally across the different scales. We believe
that the reason behind this is that feature encoders trained
for a discriminative task will have different structures than
those trained on generative tasks. For the former, models
tend to capture a subset of key features useful for discrim-
ination, while disregarding other less relevant features. On
the latter however, the model needs an extensive representa-
tion of the different objects it should generate. In practice,
this translates to feature encoders having poor conditioning.
The range of activations differs greatly from one feature to
the other, which leads to bias towards a minority features
that have a high amplitude of activations. A simple way
to resolve this issue is by applying normalization these fea-
tures to have a distribution with zero mean and a unit stan-
dard deviation across the batch.

In some situations, linear scaling of the features might
not be enough to have proper conditioning of the features.
Accordingly, we reduce the dynamic range of the feature
maps before the normalization by using a sigmoid activation
at the feature outputs of the pretrained encoder.

A.2. Computation of the mIoU evaluation metrics

To compute the mIoU metric, we infer segmentation
maps for generated images. We infer segmentation
maps for the generated images using the same net-
works as in OASIS [52]: UperNet101 [61] for ADE-
20K, multi-scale DRN-D-105 [64] for Cityscapes, and
DeepLabV2 [8] for COCO-Stuff. We also measure mIoU
using Mask2Former [10] with Swin-L backbone [35]
(mIoUMF), which yields more accurate segmentations, and
thus a more accurate comparison to the ground-truth masks.

In Table S4 we compare the segmentation accuracy on
the three datasets we used in our experiments. The re-
sults confirm that Mask2Former is more accurate for all
three datasets, in particular on COCO-Stuff, where it boosts
mIoU by more than 19 points w.r.t. DeepLab-v2.



Name Link

ImageNet https://www.image-net.org
COCO-Stuff https://cocodataset.org
Cityscapes https://www.cityscapes-dataset.com
ADE-20K https://groups.csail.mit.edu/vision/datasets/ADE20K/
Detectron2 https://github.com/facebookresearch/detectron2
ConvNext https://github.com/facebookresearch/ConvNeXt
Swin https://github.com/microsoft/Swin-Transformer
EfficientNet https://github.com/lukemelas/EfficientNet-PyTorch
VGG19 https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py
Deeplab-v2 https://github.com/kazuto1011/deeplab-pytorch/
UperNet101 https://github.com/CSAILVision/sceneparsing
MS DRN-D-105 https://github.com/fyu/drn
Mask2Former https://github.com/facebookresearch/Mask2Former
Self-supervised FID [39] https://github.com/stanis-morozov/self-supervised-gan-eval

Name License

ImageNet Terms of access: https://www.image-net.org/download.php
COCO-Stuff https://www.flickr.com/creativecommons
Cityscapes https://www.cityscapes-dataset.com/license
ADE-20K https://groups.csail.mit.edu/vision/datasets/ADE20K/terms/
Detectron2 Apache-2.0 license
R50 BSD
ConvNext MIT License
Swin MIT License
EfficientNet Apache-2.0 license
VGG19 BSD-3-Clause license
UperNet101 BSD-3-Clause license
MS DRN-D-105 BSD-3-Clause license
Deeplab-v2 MIT License
Mask2Former MIT License

Table S1. Links to the assets used in our work and the corresponding licensing information.
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Figure S1. Schematic overview of our noise injection mechanism using cross-attention.

A.3. Influence of face blurring

For Cityscapes we use the release of the dataset with blurred
faces and licence plates, which is available publicly on the
website listed in Table S1. We blurred faces in ADE-20K
and COCO-Stuff.

To assess the impact of blurring, we train OASIS on
blurred images using the original source code from the
authors and compare to their reported results on the non-
blurred data. We report our results in Table S5. Here, and
elsewhere in the paper, we also use the blurred data to com-
pute FID w.r.t. the generated images. We see that blurring
has a negative impact on FID, most notably for COCO-

Stuff (+1.8), and to a lesser extent for ADE-20K (+0.8) and
Cityscapes (+0.3). The mIoUMF scores also degrade on
all the datasets when using blurred data: on COCO-Stuff,
ADE-20K and Cityscapes by 5.0, 3.9, and 0.4 points respec-
tively. Note that in all comparisons to the state of the art,
we report metrics obtained using models trained on blurred
data for our approach, and models trained on non-blurred
data for other approaches. Therefore, the real gains of our
method over OASIS (and probably other methods as well)
are even larger than what is shown in our comparisons in
Table 1 in the main paper.
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Parameter Description

Hyperparameters

z dimension 64
w dimension 256
Batch size 64
Learning rate 10−3

β1 for Adam 0
β2 for Adam 0.99
EMA beta 0.9999

Label map encoding

Pyramid block Conv2d(kernel size=3), BN, GELU, CrossAttention, BN,
GELU, SelfAttention, GELU, BN, Conv2d(kernel size=1)

Self Attention channel divider 2
Cross Attention channel divider 2
Conv block Conv2d(kernel size=3), BN, GELU, Conv2d(kernel size=1)
Block type [Conv, Conv, Conv, Linear, Linear]

Image synthesis branch

Channel base 64
Number of residual blocks 6
Channel depths [1024, 1024, 1024, 512, 256, 128, 64]
Residual block SPADE, Leaky RELU, Conv2d(3)
Pyramid dimensionality 64
Hyperbolic tangent on output No

Contrastive learning branch

Perceptual network VGG19
Contrastive encoding channels [64, 128, 256, 512, 512]
Contrastive embedding dimension 256
Number of patches 128

Table S2. Architecture details of the generator.

Parameter Description

Hyperparameters

Number of multiscale backbone features 4
Full resolution embedding dimension 128
Number of residual blocks 5

Decoder

Residual block Conv2d(kernel size=3), Leaky RELU, Conv2d(kernel size=1), Leaky RELU
Leaky RELU slope 0.2
Penultimate channel dimension 256

Feature conditioning

Conditioning normalization Batch Norm w.o learned affine
Conditioning non-linearity Hyperbolic tangent

Table S3. Architecture details of the discriminator.

ADE-20K Cityscapes COCO-Stuff

UperNet101 42.7 — —
MS DRN-D-105 — 61.3 —
DeepLab-v2 — — 35.3

Mask2Former 45.3 69.9 54.5

Table S4. Segmentation performance in terms of mIoU on real
images using different segmentation models. To match the setting
used in our semantic image synthesis experiments, evaluation im-
ages are downsampled to 256 × 256 for ADE-20K and COCO,
and to 256× 512 for Cityscapes.

Dataset Model Blurring FID (↓) mIoUMF(↑)

OASIS ✗ 17.0 52.1
OASIS ✓ 18.8 47.1COCO-Stuff
DP-SIMS (ours) ✓ 13.6 65.2
OASIS ✗ 28.3 53.5
OASIS ✓ 29.1 49.6ADE-20K
DP-SIMS (ours) ✓ 22.7 67.8
OASIS ✗ 47.7 72.0
OASIS ✓ 48.0 71.6Cityscapes DP-SIMS (ours) ✓ 38.2 78.5

Table S5. Influence of face blurring on the performance of OASIS.



A.4. Carbon footprint estimation

On COCO-Stuff, it takes approximately 10 days to train our
model using 8 GPUs. On ADE-20K and Cityscapes the
training times are about 6 and 4 days respectively. Given a
thermal design power (TDP) of the V100-32G GPU equal to
250W, a power usage effectiveness (PUE) of 1.1, a carbon
intensity factor of 0.385 kg CO2 per KWh, a time of 240
hours × 8 GPUs = 1920 GPU hours. The 250× 1.1× 1920
= 528 kWh used to train the model is approximately equiv-
alent to a CO2 footprint of 528 × 0.385 = 208 kg of CO2

for COCO-Stuff. For ADE-20K this amounts to 124 kg of
CO2, and 83 kg of CO2 for Cityscapes.

B. Additional experimental results

B.1. Frozen vs. finetuned backbones

We experimented with training the feature backbone, rather
than fixing it as in our default setup, and initializing from
scratch or using a pre-trained model. We report the re-
sults on COCO-Stuff in Table S6. All tested alternatives
provide worse performance than our default setting (fixed
pre-trained backbone). When finetuning the backbone it is
better to start from the pre-trained model, and using a fixed
randomly initialized results in the worst performance.

Backbone Initialization FID mIoUMF

Fixed Random 43.3 42.9
Finetuned Random 18.9 52.6
Finetuned IN-21k pre-trained 17.8 60.1
Fixed IN-21k pre-trained 13.6 65.2

Table S6. Performance comparison between fixing and finetuning
the disrciminator encoder.

Moreover, we find that using a fixed pre-trained back-
bone also results in significantly faster convergence com-
pared to the alternatives. In Fig. S2, we report training
progress for models trained on COCO-Stuff with both a
frozen and trainable encoder. We additionally evaluate the
trainable encoder with random vs. ImageNet-21k initializa-
tions. The fixed encoder model converges much faster than
its trainable counterpart. For example, while the frozen
model requires approximately 12 hours to achieve an FID
below 25, the trainable models require more than a week of
training to achieve the same score.

B.2. Quantifying bias towards ImageNet classes

Our discriminator backbones are pre-trained for ImageNet
classification, as is the Inceptionv3 model [54] used in the
computation of the FID metric. Therefore, the question
arises whether our results are influenced by a bias of the
features towards the classes in the ImageNet dataset. To an-
alyze this, we report in Tab. S7 a quantitative comparison
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Figure S2. Convergence speed comparison for COCO-Stuff train-
ing with learnable vs. frozen encoder

following the approach outlined in [39], where we com-
pute the Fréchet distance between two Gaussians fitted to
feature representations of the SwAV Resnet50 network that
was pre-trained in a self-supervised manner on ImageNet-
1k. Our models retain state-of-the-art performance with re-
spect to this metric on all the three datasets studied, further
corroborating our results.

Additionally, we further experiment with the influence of
the backbone pre-training in Table S8. Differently from the
main paper where FID with the Inceptionv3 features is stud-
ied, here we find than the IN-21k checkpoint brings about
better performance than its IN-1k counterpart. While the
fine-tuning at high resolution (384 vs 224) also improves
SwAV-FID.

OASIS SDM PITI DP-SIMS

COCO-Stuff 3.09 2.68 2.52 2.14
ADE-20K 4.35 3.85 — 2.84
Cityscapes 4.75 3.94 — 3.71

Table S7. Evaluation of SwAV Resnet50 FID on ADE-20K for
different methods. We use a ConvNext-L backbone for DP-SIMS.

Pre-training Acc@1 FIDSwAV (↓)

IN-1k@224 84.3 3.03
IN-21k@224 86.6 2.97
IN-21k@384 87.5 2.84

Table S8. Evaluation of SwAV Resnet50 FID with different pre-
trainings evaluated on ADE-20K.

B.3. Influence of diversity loss

Our diversity loss is similar to prior works [38, 63] with
a few notable differences. Mainly, the hinge term and the
image distance space. In [38] it is shown that this loss for-
mulation is a lower bound for the averaged gradients over
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Figure S3. Noise vector interpolation. By interpolating the noise vector between two different values, we can identify the factors of
variation in the image which correspond to differences in colors, textures as well as object structures.

the noise vectors z1, z2, therefore our diversity loss with
the hinge term is akin to encouraging a minimal amplitude
τdiv of the gradients with respect to the noise conditioning.
Second, while prior work computed the distance between
images either in image space or the discriminator’s feature
space, we found that neither of these two choices was opti-
mal in our experiments. The discriminator’s feature space
works well for class-conditional synthesis because the dis-
criminator’s underlying feature representation is semanti-
cally richer than for semantic image synthesis where the
dense prediction task of the discriminator yields very lo-
calized embeddings.

We obtain the diversity cutoff threshold τdiv by comput-
ing the mean distance between different generated images
in a batch and averaging across the training set:

τdiv =
1

|B|2
·
∑
i,j∈B

∥∥Gf (xi, zi)−Gf (xj , zj)
∥∥
1

∥zi − zj∥1
. (7)

The distance is computed in the feature space induced by
the penultimate layer of the generator. It is then normalized
by the distance between the noise vectors.
We conduct a more in-depth analysis on the impact of the
diversity loss on the image quality and diversity. We train
our model with a ConvNext-L backbone with different val-
ues for the diversity loss λdiv. These results are reported in
Table S9. Without the diversity loss, the generator ignores
the noise input, which translates to a low LPIPS score. Im-
proving diversity with a weight of λdiv = 10 results more
diversity (LPIPS), better image quality (FID), and in put
consistency (mIoUMF).

Additionally, we experiment with different distances for
the diversity loss: based either on the generator features, or
on the RGB image space directly as in [38, 63]. As reported
in Table S10, we find that the diversity loss in image space

λdiv 0 10 100

FID (↓) 22.9 22.7 23.3
mIoUMF(↑) 67.7 67.8 67.7
LPIPS (↑) 1.5e-5 0.47 0.36

Table S9. Influence of diversity loss weight on model perfor-
mance. We evaluate image quality using FID and mIoUMF metrics
while diversity is evaluated using LPIPS.

Distance space FID (↓) mIoUMF LPIPS (↑)

Feature 22.7 67.8 0.47
Image 23.2 64.2 0.09

Table S10. Comparing different distances for our diversity loss.

is less effective. It reaches an LPIPS score of 0.09 while
the feature space loss achieves an LPIPS of 0.47. Both FID
and mIoUMFmetrics are also improved by this choice. By
inspecting example generations, we find that using image
space distances results in variations in the overall contrast
and brightness of the image only, while using feature space
distances results in more high-level variations as illustrated
in Fig. S3 and Fig. S4.

B.4. Sampling strategy

We quantify the influence of the balanced sampling strat-
egy with respect to standard uniform sampling on COCO-
Stuff and Cityscapes datasets. We report these results in
Table S11, and find that balanced sampling yields perfor-
mance gains in both FID and mIoU for both the datasets. In
Figure S5, we present qualitative examples of images gen-
erated with the model trained on Cityscapes. Balanced sam-
pling clearly leads to improvements in the visual quality of
objects such as scooters, buses and trams.



Figure S4. Additional examples of diversity in generated images.

Dataset Sampling strategy FID (↓) mIoUMF(↑)

Uniform 14.1 62.9COCO-Stuff Balanced 13.6 65.2
Uniform 38.7 75.6Cityscapes Balanced 38.3 78.3

Table S11. Influence of sampling strategy for models trained on
the COCO-Stuff and Cityscapes datasets.

B.5. Influence of pixel-wise loss function

In Figure S6, we compare the per-class mIoU values when
training using different loss functions: weighted cross-
entropy (as in OASIS), focal loss, and weighted focal loss.
This extends the class-aggregated results reported in Ta-
ble Table 8 in the main paper. These experiments were
conducted on the Cityscapes dataset using a pre-trained
ConvNext-L backbone for the discriminator. Our use of the
weighted focal loss to train the discriminator results in im-
proved IoU for most classes. The improvements tend to be
larger for rare classes. Class weighting is still important,
as can be seen from the deteriorated IoU for a number of
classes when using the un-weighted focal loss.

B.6. Influence of instance-level annotations

Since some works do not use the instance masks [33, 52,
58], we provide an additional ablation in Table S12 where
we train our models on COCO-Stuff and Cityscapes without

Dataset Instance masks FID (↓) mIoUMF(↑)

✗ 13.9 65.0COCO-Stuff
✓ 13.6 65.2
✗ 40.1 76.3Cityscapes
✓ 38.2 78.5

Table S12. Influence of instance masks on model perofrmance.

FID mIoUMF

DP-SIMS (ConvNext-L) 13.6 65.2
DP-SIMS (ConvNext-XL) 13.3 68.0

Table S13. Models with different ConvNext backbones on COCO-
Stuff.

the instance masks to isolate the gains in performance they
may bring. For both these datasets, we observe deterioration
in the model’s performance when not using instance masks.
The difference is less noticeable on COCO-Stuff where the
labels are already partially separated, FID only increases
by 0.3 points. On the other hand, this difference is more
acute in Cityscapes where FID increases by 1.9 points while
mIoUMFreduces by 2.2 points. In Cityscapes, instances are
not separated in the semantic label maps, this adds more
ambiguity to the labels presented to the model which makes
it more difficult to interpret them in a plausible manner.

B.7. Larger discriminators

For larger datasets, scaling the backbone architecture could
prove beneficial in capturing the complexity of the dataset.
Accordingly, we train a model on COCO-Stuff using a
ConvNext-XL model. It is approximately 1.76 times bigger
than ConvNext-L used in our main experiments, with 350M
parameters. In Table S13, we report its performance as a
pre-trained feature encoder in our discriminator. The larger
ConvNext-XL encoder further improves results in terms of
both FID and mIOU.

B.8. Qualitative samples

We provide qualitative samples of the images generated
with our DP-SIMS model using different pre-trained back-
bones for the discriminator in Figure S7. In Figure S8,
Figure S9, and Figure S10 we provide examples of images
generated with our DP-SIMS model and compare to other
state-of-the-art models on the ADE-20K, COCO-Stuff, and
Cityscapes datasets, respectively.



Label map No class balancing Class balancing

Figure S5. Qualitative examples of images generated with and without balanced sampling to train models on Cityscapes.
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Figure S7. Qualitative comparison of DP-SIMS on ADE-20K using Swin-B, Resnet50 (R50), EfficientNet-34, and ConvNext-L backbones.
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Figure S8. Qualitative comparison with prior work on ADE-20K, using a ConvNext-L backbone for DP-SIMS (Ours).
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Figure S9. Qualitative comparison with prior work on COCO-Stuff, using a ConvNext-L backbone for DP-SIMS (Ours).
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Figure S10. Qualitative comparison with prior work on Cityscapes, using a ConvNext-L backbone for DP-SIMS (Ours).
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