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A. Contents
We organize this supplementary document as follows:
• Section B provides background on Shape-from-Polarization (SfP).
• Section C includes the details of our training implementation.
• Section D explains additional details of our architecture.
• Section E studies our Polarization Prompt Fusion Tuning (PPFT) as a parameter-efficient fine-tuning method.
• Section F presents results on unseen synthetic data derived from the HAMMER dataset [7].
• Section G presents additional qualitative results from our ablation studies.
• Section H provides discussion on alternative dataset to evaluate this work.

B. Shape from Polarization
B.1. Polarization States

The raw polarization measurement Ipol is converted to an intensity image Iun, Angle of Linear Polarization (AoLP) (ϕ), and
Degree of Linear Polarization (DoLP) (ρ) using Equation 1, 2, and 3 respectively [1].
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B.2. Importance of the Viewing Direction

The viewing direction, V, is a 3-channel map, where the value at each pixel location (u, v) is a 3-element vector representing
the light incident direction. This can be computed from the 3-by-3 camera intrinsic matrix, K, as shown in Equation 4, where
H(u,v) is a vector of the pixel location in the homogeneous coordinate, i.e., (u, v, 1).

V(u,v) = K−1H(u,v) (4)

Assuming perspective projection, the viewing direction alone allows us to determine the surface normal direction from
polarization data. This is because both the angle of linear polarization (ϕ) and the degree of linear polarization (ρ) are
functions of surface normal as well as viewing direction.
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Degree of Linear Polarization. The DoLP is a function of the refractive index η and the viewing angle θv , see Equation 5
and 6 for diffuse and specular dominant reflection cases respectively [1].
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where

C =
√
η2 − sin2θv(u,v). (7)

The viewing angle, θv , is dependent on the viewing direction as well as the surface normal, as in Equation 8.
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Angle of Linear Polarization. Following [8], the AoLP, ϕ can be computed via Equation 9, where Φ is calculated based on
Equation 10, where nc is the surface normal of the image plane, i.e., (0, 0, 1). We can observe that in either specular-dominant
or diffuse dominant reflections, the AoLP is dependent on the viewing direction.

ϕ(u,v) = arctan(Φy
(u,v),Φ

x
(u,v)) (9)

Φ(u,v) =

{
n(u,v) ×V(u,v) × nc, diffuse
n(u,v) ×V(u,v) ×V(u,v) × nc, specular

(10)

C. Training Details
C.1. HAMMER Dataset

Using the HAMMER dataset [7], we use 4× down-sampled images for all inputs, that is, from (832, 1088) to (272, 208)
by slicing the input spatially with step 4. We train 250 epochs for all methods. A batch size of 14 per GPU is used on
two NVIDIA 4090 GPUs. We use AdamW optimizer [10] with initial learning rate of 10−3 and weight decay of 10−2. In
addition, we adopted the cosine scheduler [11] to decay our learning rate.

C.2. SPW Dataset

We evaluate our proposed strategy on SfP tasks, using the SPW dataset [8]. For this, we train our model for 8000 iterations.
We use a single NVIDIA A40 GPU with a batch size of 20 for training. For both training and test sets, the original frames
of size 1224 × 1024 are used. We use a different data split than adopted by the original work [8], which leads to different
quantitative results as presented in [8]. Note that nevertheless, the split is consistent across all models, including on the
reported SfP-Wild. Also, please note that our focus is on the gain by adopting our proposed PPFT.

D. Details of Network Architecture
We provide the detailed architecture and network parameters of our proposed method in Table 1). We apply the same 3 × 3
convolutional layer as the RGB and depth input for the input polarization embedding. In order to align the input between each
encoder layer, we apply a 3 × 3 convolutional layer with a stride of 2, which has the same output channel dimension as the
output from the original encoder layer. While the foundation backbone is kept as the same design of CompletionFormer [17],
the proposed method can be directly applied in other ViT [2] based backbones to enable cross-modality transfer learning.



Name Backbone Layers Fusion Layers Output dimension

RGB and Depth Embedding

input — —
Polarization: H ×W × 7
RGB Image: H ×W × 3
Sensor Depth: H ×W × 1

conv separate
RGB: Conv 3× 3, 48

Sensor Depth: Conv 3× 3, 16
Polarization: Conv 3× 3, 48

Polarization Feature: H ×W × 48
RGB Feature: H ×W × 48
Depth Feature: H ×W × 16

conv1
concat [RGB + Polarization,

Depth Feature]
Conv3× 3, 64

— H ×W × 64

Encoder

conv2 ResNet34 [4] Block ×3 — H ×W × 64

conv3
ResNet34 [4] Block × 4

PPFB (RGB, Polarization Feature)

Conv 3× 3,
stride = 2, 128

PPFB Block

1
2
H × 1

2
W × 128

conv4
IJCAT Blocks [17]

PPFB (RGB, Polarization Feature)

Conv 3× 3,
stride = 2, 64

PPFB Block

1
4
H × 1

4
W × 64

conv5
IJCAT Blocks [17]

PPFB (RGB, Polarization Feature)

Conv 3× 3,
stride = 2, 128

PPFB Block

1
8
H × 1

8
W × 128

conv6
IJCAT Blocks [17]

PPFB (RGB, Polarization Feature)

Conv 3× 3,
stride = 2, 320

PPFB Block

1
16

H × 1
16

W × 320

conv7
IJCAT Blocks [17]

PPFB (RGB, Polarization Feature)

Conv 3× 3,
stride = 2, 512

PPFB Block

1
32

H × 1
32

W × 512

Decoder

dec6
ConvTranspose 3× 3,

stride = 2, 256
Convolutional Attention Layer

— 1
16

H × 1
16

W × 256

dec5

concat [dec6, conv6]
ConvTranspose 3× 3,

stride = 2, 128
Convolutional Attention Layer

— 1
8
H × 1

8
W × 128

dec4

concat [dec5, conv5]
ConvTranspose 3× 3,

stride = 2, 64
Convolutional Attention Layer

— 1
4
H × 1

4
W × 64

dec3

concat [dec4, conv4]
ConvTranspose 3× 3,

stride = 2, 64
Convolutional Attention Layer

— 1
2
H × 1

2
W × 64

dec2

concat [dec3, conv3]
ConvTranspose 3× 3,

stride = 2, 64
Convolutional Attention Layer

— H ×W × 64

Initial Depth, Confidence, Non-local Neighbors, Affinity Prediction Head

dec1
concat [dec2, conv2]

Conv 3× 3, 64
— H ×W × 64

dec0
concat [dec1, conv1]

Conv 3× 3, η
— H ×W × η

SPN Refinement

refine
NLSPN [13]

with recurrent time K = 6
— H ×W × 1

Table 1. Network Architecture Details of Proposed Polarization Prompt Fusion Tuning (PPFT) Method. Here, ‘concat’ denotes the
concatenate operation along the channel dimension.

E. Parameter Efficient Fine-Tuning
We also investigate our proposed approach as a Parameter-Efficient Fine-Tuning (PEFT) [3, 16] method. Specifically, we
freeze all pre-trained foundation weights during training and only update the parameters in our proposed Polarization Prompt
Fusion Block (PPFB) as well as the polarization embedding layers. We compare this against two parameter-efficient fine-
tuning methods based on Visual Prompt Tuning (VPT) methods, namely VPT [6] and ViPT [18]. As Table 2 reports, the
proposed cross-modal transfer learning module achieves a favorable response compared to training the model on the HAM-
MER [7] dataset from scratch. The freezed version of our proposed method obtains a more significant performance gain at
the cost of only a small increase in the number of trainable parameters compared to VPT [6] and ViPT [18]. We observe that
methods based on Visual Prompt Tuning (VPT) [6, 18] are not able to fit complex dense geometry prediction problems which
agree with the observation by Jia et al. [6]. Qualitative results of various PEFT methods are presented in Figure 1.



Method
RMSE δRMSE MAE δMAE Parameters

(mm)↓
[17]* 313.60 - 241.40 - -
[17]† 41.17 - 22.14 - 82.40M (100%)
VPT [6] 63.78 +22.61 38.12 +15.98 6.35M (7.7%)
ViPT [18] 52.30 +11.13 30.39 +8.25 2.15M (2.6%)
Ours‡ 40.71 -0.46 22.07 -0.07 7.32M (8.9%)

Table 2. Ablation Experiments for Cross-modal Transfer Learning. Parameters denote the number of trainable parameters, with
the number in parenthesis indicating the proportion of the trainable parameters w.r.t. to all parameters. With our proposed Polarization
Prompt Fusion Tuning (PPFT) the performance is improved significantly. * denotes that the foundation is pre-trained on the NYU-Depth
V2 dataset [12]. † denotes that the model is trained from scratch with RGB images from the HAMMER dataset [7], ‡ denotes that the
foundation is freezed.
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Figure 1. Evaluation of Proposed Method as a Parameter-efficient Fine-tuning Method. Our proposed method, with the pre-trained
foundation model frozen during the training process, shows competitive performance on the dense geometry prediction problem studied.

Scanning
Lines

Model
RMSE
(mm)↓

MAE
(mm)↓

δ1 ↑ δ2 ↑ δ3 ↑

8

DySPN [9] 225.00 166.13 0.518 0.776 0.909
CompletionFormer [17] 109.60 78.94 0.855 0.990 0.995
CompletionFormer† [17] 147.40 106.40 0.723 0.947 0.999
Ours 60.04 38.38 0.968 0.998 0.999

16

DySPN [9] 238.52 179.50 0.466 0.735 0.883
CompletionFormer [17] 93.00 67.56 0.907 0.995 0.999
CompletionFormer† [17] 147.30 107.40 0.711 0.953 0.999
Ours 55.07 39.13 0.980 0.999 1.000

Table 3. Quantitative Comparison on Synthetic LiDAR Depth Derived from the HAMMER [7] Dataset. To compare, we select the
best three models [9, 17] from the previous tested backbones. Our method obtains the best performance in both synthetic cases. † denotes
the model is fine-tuned with RGB images.

F. Additional Testing on Unseen Synthetic Patterns
Inspired by [5], we generate two types of perturbations to the ground truth depth map to simulate different sparse depth mea-
surements by LiDAR. Specifically, we keep 8 and 16 scan lines of depth and remove all of the other depth measurements to
simulate the measurement sparsity of typical LiDAR sensors. We directly test all models trained with the HAMMER dataset
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Figure 2. Evaluation of Proposed Method on Unseen Synthetic Data. We simulate sparse measurement from typical LiDAR sensors by
only keeping 8 and 16 scan lines of measurement. Our proposed method shows superior generalization ability to unseen depth degradation
patterns. † denotes that the model has been fine-tuned with pre-trained weights on a large-scale RGB-D dataset.

[7] on the synthetic data. Quantitative results on the synthetic dataset are presented in Table 3. Our method consistently
obtains better performance than the three best methods from the previous real sensor depth comparison, where the highest
performance (38.38 and 39.13 on the MAE metric) has been achieved on 8, 16 lines LiDAR patterns, respectively. This
shows that our method generalizes to complete depth measurement, even on the patterns that are not occurring in the training.
Moreover, our polarization-guided depth completion method achieves the best for LiDAR patterns on inputs with different
sparsity levels, suggesting that our Polarization Prompt Fusion Tuning (PPFT) strategy offers a robust solution across varying
sparsities.

G. Additional Qualitative Results
In Figure 3, we present additional qualitative results of using the shallow version of our proposed PPFT against the full
pipeline (i.e., the deep version). With the shallow version, we observe weaker generalization capability under irregularities
(e.g., transparency) and detailed regions, for example, the fork highlighted in Row 2. However, the shallow version of the
proposed method still performs adequately.

Ground truth depth Sensor depth Depth of shallow ver. Depth of deep ver.

Figure 3. Qualitative Results of the Shallow and Deep Version of PPFT. Green boxes highlight the regions to emphasize. Comparisons
of the deep and shallow versions of our method are presented. The shallow version shows poorer generalizability towards irregularities
(e.g. transparency) and detailed structures.



H. Discussion on Additional Dataset
In the course of this work, we have also considered two additional datasets that provide depth and polarization measurement,
namely CroMo [15] and DPS-Net [14]. However, they have been excluded from this study after consideration, this is based
on the following argument: Our method can be applied to datasets with paired low-quality sensor depths and high-quality
GT depths. However, CroMo on one hand lacks high-quality ground truth depths on challenging areas (e.g., on transparent
objects); while DPS-Net, despite having good quality ground truth depth, does not provide paired low-quality sensor depths.
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