
Resource-Efficient Transformer Pruning for Finetuning of Large Models

Supplementary Material

6. Anatomy of Transformer-based Models

RECAP is designed as a task-agnostic but also a task-
aware framework for finetuning with efficient pruning of
transformer-based large models. It is also important to ex-
amine the anatomy of these models to better understand
how RECAP increases the memory efficiency of the pro-
cess. Therefore, in this section, we provide more back-
ground on transformer-based models in terms of the factors
in computation and memory cost. In terms of computation
cost, we can categorize the operations in a transformer into
three main groups:

• Tensor contractions: linear layers and attention heads
with matrix multiplications (most expensive)

• Normalizations: softmax and layer normalization with re-
duction operations (less expensive)

• Element-wise operations: biases, dropout, activations,
and residual connections (least expensive)

Considering the high computation cost of attention and
feedforward layer operations, techniques targeting to speed
up these executions for inference have been proposed such
as flash attention and adaptive token selection. However, as
the focus of our study is resolving the issue of GPU memory
bottleneck, we further analyze the components of memory
footprint during finetuning. There are four main compo-
nents causing memory footprint during finetuning:

• Weights: Model weights have to be stored at GPU during
forward and backward passes. The cost is 4 bytes/param
at fp32, 2 bytes/param at fp16/bf16, and so on.

• Optimizer states: Optimizer states have to be stored at
GPU during parameter and optimizer state updating steps
after backward passes. At fp32, the cost is 4 bytes/param
for optimizers that store one state per parameter such as
SGD with momentum, and 8 bytes/param for optimizers
that store two states per parameter such as Adam.

• Gradients: Gradients of the parameters being updated
have to be stored at GPU during parameter updating steps
after backward passes. The cost is 4 bytes/param at fp32.

• Activations: Certain intermediate activation outputs dur-
ing the forward pass can be temporarily stored at GPU to
prevent re-calculations during the backward pass and high
latency. The cost of activations mainly depends on the
model architecture, batch size, and input sequence length.

There can be additional costs due to pre-allocations, loaded
kernels etc., which may depend on the implementation and
the neural network library. We provide further details about
implementation in Section 8.2.

7. Details of Weight Grouping for Structured
Pruning and Masking

In this section, we provide further details on RECAP in
terms of how we group weights for pruning and mask-
ing. As explained in Figure 2 in Section 3.1.1, we con-
sider weights coupled in a head as groups for attention mod-
ules. Formally, let W(l)

q , W(l)
k , W(l)

v denote the query, key,
value and W

(l)
o the output weight matrices of the l-th trans-

former module, where W
(l)
q , W(l)

k , W(l)
v ∈ Rd(l)

a h(l)×d
(l)
i

and W
(l)
o ∈ Rd(l)

o ×d(l)
a h(l)

. Here, d(l)a is the number of hid-
den dimensions at each head, h(l) is the number of heads,
and d

(l)
i , d(l)o are the input/output dimensions, for the l-th

transformer module. Likewise, we also group the feedfor-
ward layer weights W

(l)
f1

∈ Rd
(l)
f ×d(l)

o , W(l)
f2

∈ Rd(l)
o ×d

(l)
f ,

but in the neuron-level resolution. Thus, we have the fol-
lowing set of pruning weight groups:

G(p) = { (W(l)
q
[d

(l)
a ma:d

(l)
a (ma+1), :]

,W
(l)
k
[d

(l)
a ma:d

(l)
a (ma+1), :]

,

W(l)
v
[d

(l)
a ma:d

(l)
a (ma+1), :]

,W(l)
o
[: ,d

(l)
a ma:d

(l)
a (ma+1)]

) |

ma ∈ {1, ..., h(l) − 1}}Ll=1 ∪
{ (W

(l)
f1[mf :mf+1, :]

,W
(l)
f2[: ,mf :mf+1]

) |

mf ∈ {1, ...d(l)f − 1}}Ll=1,

and M = |G(p)| is the number of weight groups for pruning
and L is the number of transformer modules. While sorting
these weight groups based on importance values and keep-
ing the most important groups, we enforce each module to
keep at least one head to prevent layer removal.

For the finetuning masks, we consider grouping at the
neuron level and do not enforce coupled pruning in atten-
tion modules hence, we have the following set of finetuning
weight groups:

G(f) = { (W(l)
q[ma:ma+1, :]

), (W
(l)
k[ma:ma+1, :]

),

(W(l)
v[ma:ma+1, :]

), (W(l)
o[: ,ma:ma+1]

) |
ma ∈ {1, ..., h(l) − 1}}Ll=1 ∪

{ (W
(l)
f1[mf :mf+1, :]

), (W
(l)
f2[: ,mf :mf+1]

) |

mf ∈ {1, ...d(l)f − 1}}Ll=1,

and N = |G(f)| is the number of weight groups for fine-
tune masking. These weight groupings are then utilized
to perform the importance calculations and actual prun-

Figure 10. Schematic of the operations in pruning and finetuning mask computing stages.

ing/masking operations. We also provide a flowchart in Fig-
ure 10 to illustrate the processes executed at the CPU for
pruning and finetuning mask calculations over these weight
groups.

8. Experiment Setup
In this section, we provide the details of datasets, prepro-
cessing, and implementation.

8.1. Datasets and Preprocessing

In image classification experiments, we consider common
benchmark datasets: CIFAR-100 [22] (60K images, 32x32
resolution, 100 classes) and TinyImageNET (100K images,
64x64 resolution, 200 classes), which is the downsampled
and smaller version of ImageNet 2012 [8]. We consider
ImageNet-21k (IN21K) as the pre-training dataset in image
classification experiments. We follow the data augmenta-
tion techniques applied in [17] with center crop and random
horizontal flip. We resize images to 224x224 considering
the pre-trained model configuration. For semantic segmen-
tation, we use the Cityscapes [7] and KITTI [1] datasets,
which contain images from urban areas mostly with cars,
pedestrians, roads, etc. Cityscapes has 5000 images with
the resolution of 1024x2048 and KITTI has 400 images
with the resolution of 375x1242, finely labeled at pixel-
level for 19 classes. We hold out 10% of the train-set im-
ages for validation. In natural language understanding ex-
periments, we consider the GLUE benchmark, which en-
capsulates nine datasets in varying dataset sizes for differ-
ent tasks (sentiment analysis, linguistic acceptability, ques-
tion answering etc.) [37]. For tokenization, we use the pre-
trained tokenizers provided by the open-source Hugging-
Face library [38].

8.2. Implementation Details

On CIFAR-100 and TinyImageNet datasets, we perform ex-
periments with two variants of vision transformer: ViT-base
with 86M parameters and ViT-large with 307M parame-
ters [11]. These models are pretrained with 16x16 patches

of the images in Image-Net21K, which is a very large-scale
image dataset with 14 million images from 21843 classes at
224x224 resolution. On Cityscapes and KITTI datasets, we
use the Mask2Former architecture, which has shown great
performance across panoptic/instance/semantic segmenta-
tion tasks. This model employs the optimization at the mask
level instead of pixel level, and utilizes a pixel decoder and a
multi-scale transformer decoder with masked attention. We
consider the two versions, pretrained at ImageNet-21K with
Swin-base and Swin-large encoder backbones. We train
with half-resolution images in Cityscapes and with full res-
olution in KITTI. We perform full-resolution single-scale
inference.

We use the first-order Taylor expansion-based prun-
ing importance criterion and empirical Fisher Information-
based finetuning importance criterion for RECAP in all
comparison experiments. In all experiments, we operate on
fp32-bit precision except optimizer states, which we store
with bf16. We use Adam optimizer and perform separate
logarithmic grid searches for the learning rate at each setup
in the range of {1e-5, 1e-3} and choose the value based
on validation performance. We use linear decay for the
learning rate during each iteration. We perform two epochs
of training at each finetuning stage and repeat five itera-
tions (K = 5), which results in ten epochs of finetuning
in total. We set the size of the pseudo-dataset used for
importance calculations to 100. We utilize gradient accu-
mulation during finetuning. In LoRA, we apply the tech-
nique on attention weights. We set the number of dimen-
sions to 8 and the scaling factor to 32. In Pre-FT and
Post-FT pruning, we use the same pruning importance cri-
terion and perform ten epochs of finetuning. We report the
results for the checkpoint with the best validation perfor-
mance. We repeat image classification experiments three
times and report the mean of the obtained results. For
memory measurements, we report the total allocation re-
quired for weights, gradients, optimizer states, and acti-
vations. Experiments are conducted on a machine with
RTX3060 and a 2.9GHz 8-core CPU. We use Pytorch 2.0

Figure 11. Evolution of pruning masks using RECAP with 50% masking and RECAP without masking for BERT-base @ COLA. We
illustrate the pruned heads in attention models with white color (each row as a layer) computed at each iteration.

as the deep learning library, and utilize some functionali-
ties in the NNI compression library. 1 We have also mea-
sured the transfer time of tensors between CPU and GPU.
In our setup, we measure around 1.24 GB/s for CPU→GPU
and 0.56 GB/s for GPU→CPU (e.g. total transfer time per
round for weights/opt.states/masks/updates is around 0.33s
for ViT-b and 1.22s for ViT-l with RECAP). Lastly, the
reduction in the number of parameters and FLOPs of the
pruned model is almost linear with the pruning ratio. For
instance, the pruned ViT-base/large/huge with 33% prun-
ing has 59M/204M/417M parameters and 12G/42G/118G
FLOPs whereas the full variants have 86M/307M/632M pa-
rameters and 18G/62G/167G FLOPs respectively.

9. Visualization of the Pruned Model Structure
In this section, we analyze the pruned model structure with
RECAP through the iterations and also compare the behav-
ior of RECAP with and without masking. To this end,
in Figure 11, we illustrate the pruning masks calculated
for BERT-base being finetuned at CoLA and pruned with
rp = 33%. Here, we visualize the pruning masks at each
iteration such that each image has layers as rows, heads
as columns, and white items are pruned out. We observe
that the pruned model structure saturates early at around the
third iteration without masking. With masking, we observe
a smoother evolution of the pruned model structure.

10. Results with Complementary Techniques
In this section, we analyze the efficiency improvements of
RECAP when combined with other efficiency techniques
such as quantization and adapters. Since the improvements
gained with pruning are orthogonal to these techniques, we
observe further improvement in memory footprint reduction
with slight performance loss in a complementary manner.
We report the results for ViT-base at CIFAR-100 in Table 6.
Here, we report the results obtained with RECAP at 16-bit

1https://github.com/microsoft/nni

Model Method Pruning Ratio (rp)
16.6% 33.3% 50.0%

ViT-base (86M)

Full-FT: 91.84%
Head-FT: 82.75%

RECAP 90.50 88.34 83.33
RECAP (w/ bf16) 89.52 88.25 83.10
RECAP (w/ adapters) 86.33 84.40 80.75
RECAP (w/ 8-bit Adam) 89.57 87.68 82.90

Table 6. The results for ViT-base at CIFAR100 with RECAP com-
bined with bf16 quantization, adapters instead of masking during
fine-tuning and 8-bit quantized Adam optimizer.

precision, also with LoRA adapters and 8-bit quantized op-
timizer. We observe that the performance decrease is around
3% except for the adapters, where the higher drops are due
to the fact that we disable the masking during finetuning to
use adapters instead. More sophisticated methodologies to
combine pruning with adapters is a promising future direc-
tion and can potentially yield higher efficiency gains. RE-
CAP with quantization only causes a slight performance
drop of less than 1%. The fact that the advantages of RE-
CAP can be effectively combined with optimizations from
other perspectives such as quantization increases the practi-
cal applicability of our approach.

Importance Criterion for CIFAR-100 TinyImageNet

Pruning Masking 16.6% 33.3% 50.0% 66.6% 16.6% 33.3% 50.0%

Magnitude Random 89.65 85.11 70.90 47.10 85.50 79.44 65.77
Emp. FI 90.22 85.77 75.87 52.12 86.45 80.76 69.76

Connection Sensitivity Random 90.01 87.76 80.41 69.90 84.43 82.50 70.44
Emp. FI 90.44 88.10 82.76 72.45 86.88 83.65 73.14

Taylor-1st Random 89.92 88.00 80.21 68.99 84.02 82.05 70.19
Emp. FI 90.50 88.34 83.33 72.90 86.93 83.83 73.96

Taylor-2nd Random 89.90 88.05 80.62 69.11 84.60 82.76 70.02
Emp. FI 90.44 88.39 83.55 73.21 86.69 83.76 74.00

Table 7. RECAP performance on image recognition datasets with
ViT-base for different pruning and masking criteria combinations.

11. Effect of the Pruning and Masking Criteria

In this section, we analyze the effect of various criteria in
the pruning stage and finetuning mask calculations. As we
explain in Sections 3.1 and 3.2, in the main experiments, we
use first-order Taylor approximation for pruning importance
and empirical Fisher for finetuning mask importance calcu-
lations. To analyze the impact of the criteria, we evaluate
RECAP with three other pruning criteria. First, we con-
sider magnitude-based pruning [15], where the importance
of each weight group is the sum of weight magnitudes. Sec-
ond, we consider the connection sensitivity-based pruning
as suggested in [23], which depends on the scaled gradi-
ent magnitudes. Lastly, we also perform experiments with
second-order Taylor expansion-based criterion. For mask-
ing, we also experiment with random masking without any
importance calculations. We report the results on CIFAR-
100 and TinyImageNet in Table 7. We observe that Taylor-
expansion-based approximation of importance values with
empirical Fisher consistently yields the best performance.
We observe a slight performance decrease with the connec-
tion sensitivity proposed in [23]. Magnitude-based pruning
suffers a significant decrease in performance in high prun-
ing ratios. Considering the high cost of second-order Taylor
due to Hessian computations, we use the first-order Taylor
in RECAP due to its consistent performance and lower com-
putation cost.

12. Analysis of the Iterative Pruning Stage

In this section, we analyze the impact of the pseudo-dataset
(sampled from the finetuning dataset) size used for impor-
tance calculations in the pruning stage. To this end, we re-
port the performance with ViT-base at CIFAR-100 for var-
ious sizes of pseudo-datasets. We also compare the per-
formances with one-shot and iterative approaches during
pruning. We report the results in Figure 12. Here, we plot
the accuracy obtained with ViT-base on CIFAR-100 at var-

Figure 12. Accuracy for ViT-base on CIFAR-100 with RECAP at
different pruning ratios and pseudo-dataset size used for pruning
and mask computation operations. Dashed lines represent the re-
sults for RECAP with Np = 1.

ious pseudo-dataset sizes. Each line corresponds to a dif-
ferent pruning ratio. We observe that at every pruning ratio
regime, using an excessively small subset of the finetuning
dataset hurts the performance as it lowers the quality of im-
portance estimations for pruning and mask computations.
In particular, empirical Fisher has limitations in particular
when the sample size is small, which can be a factor in low
performance when |Ds| = 10. Therefore, we set the size of
Ds to 100, which is the value, where after, we observe no
significant improvement in the system performance and the
CPU operations (pruning and mask computation) would be
unnecessarily more time-consuming.

In addition, in Figure 12, we plot the results with
one-shot pruning in the pruning stage (Np = 1) us-
ing dashed lines. We normally set Np = 1, 2, 3, 4 for
rp = 16.6%, 33.3%, 50.0%, 66.6%, respectively in all ex-
periments since as shown, we observe ∼ 0.5% accuracy
decrease when Np = 1.

