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Overview of Supplementary Material
This supplementary material provides detailed information
not covered in the main manuscript due to space constraints.
First, Sec. 1 describes the bipartite matching and the de-
tailed loss function for object detection. Then, in Sec. 2,
we introduce the evaluation methods for each dataset used
in our study: Visual Genome and Open Image V6. Sec. 3
provides the implementation details. Finally, Sec. 4 shows
the results of various additional experiments.

1. Method Details
1.1. Bipartite Matching

We apply the bipartite matching used in DETR [1] to match
N predicted objects set {v̂i}Ni=1 and M ground truth ob-
jects set {vi}Mi=1. Since N is set large enough to handle
all objects appearing in the image, we pad the ground truth
objects with ϕ (no object). Subsequently, we find the best
permutation σ of N predicted objects that minimizes the
bipartite matching costs as follows:

σ = argmin
σ̂∈SN

N∑
i=1

Lmatch(vi, v̂σ̂(i)), (1)

where SN denotes all possible permutations of N pre-
dicted objects. From the best permutation σ, we denote
the permutated predictions as {v̂′i}Ni=1, where v̂′i = v̂σ(i).
The matching cost Lmatch is defined as Lmatch(vi, v̂

′
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LIoU indicates generalized intersection over union (IoU)
loss [11]. Note that Lc

match is changed to fit the focal loss [8]
for Deformable DETR [20].

1.2. Object Detection Loss

We use the bipartite matching loss proposed in DETR for
object detection. From the permutated predictions {v̂′i}Ni=1,
we compute the loss for N matched pairs of the predicted
objects and the ground truth objects as follows:

Lod =

N∑
i=1

[λcLc(v
c
i , v̂

′c
i ) + 1vc

i ̸=ϕ(λbLb(v
b
i , v̂

′b
i ))], (2)

where the loss consists of class loss Lc and box loss Lb

that is the same as box matching cost Lb
match. For Lc, cross-

entropy loss is used for DETR, and focal loss is used for
Deformable DETR.

2. Evaluation Details
2.1. Visual Genome

Among various evaluation methods for the scene graph
generation task, including scene graph detection (SGDET),
scene graph classification (SGCLS), and predicate classi-
fication (PRDCLS) [17], we adopt the SGDET evaluation
protocol due to its rigorous and comprehensive nature com-
pared to other methods. Unlike SGCLS or PRDCLS, where
ground truth categories or box coordinates of objects are
given, SGDET evaluates the performance of entity cate-
gories and box coordinates for each subject and object, as
well as predicate categories collectively. We use the widely
adopted value of 50% as the thresholding parameter for IoU
incorporated in SGDET. We also adopt the graph constraint
evaluation method proposed in Zellers et al. [18], which en-
forces a limit of one predicted predicate between a given
subject and object entity. We select the top 1 predicate for
each object pair, as determined by multiplying the predicate
score Ĝijk by the connectivity score Êij and multiplying
the corresponding class scores of the subject v̂ci and object
entity v̂cj . We use recall at k (R@k) and mean recall at k
(mR@k) [14] as evaluation metrics. mR@k is a balanced
version of R@k in that mR@k can compensate for the bias
of predicate categories by aggregating for all predicate cat-
egories.

2.2. Open Image V6

Open Image V6 is also assessed in the SGDET setting. We
adopt recall and weighted mean AP (wmAP) following the
standard settings proposed in Zhang et al. [19]. For recall,
micro-R@50 is used following previous studies [2, 6, 7, 15].
For wmAP considering the ratio of each predicate cate-
gory as the weight, wmAP of relationships (wmAPrel) and
wmAP of phrases (wmAPphr) are adopted. wmAPrel evalu-
ates whether both the subject entity and object entity boxes
have IoU greater than 50% with the corresponding ground
truth boxes. wmAPrel evaluates the single box that encloses
the boxes of the subject entity and the object entity. The
final score is calculated by 0.2 × micro-R@50 + 0.4 ×
wmAPrel + 0.4 × wmAPphr. During model inference, we
select the top 2 predicates for each object pair following
previous works [7, 15].

3. Implementation Details
Our object detector backbone is based on Deformable
DETR [20] with ResNet-50 [3]. To shorten the conver-
gence time, we pre-train the object detector backbone us-



f type # Params(M) R@50 mR@50

dot product attention 41.3 25.9 6.2
dot product 41.3 27.4 6.8
Hadamard product 41.5 29.1 7.2
sum 41.5 29.5 7.3
concat 41.6 29.9 7.9

Table 1. Ablation for relation function. Since concat repre-
sents the relationship between the attention query and attention
key without loss of information, it shows the best performance
among all f variants.

Lcon connectivity score R@50 mR@50

29.4 7.3
✓ 29.4 7.6
✓ ✓ 30.2 7.9

Table 2. Ablation for connectivity loss and score. Lcon denotes
whether the model is trained with loss for connectivity prediction.
connectivity score denotes whether we use connectivity score for
sorting predicted relation triplets in evaluation. Results show that
using connectivity loss and score both improve performance.

ing 8 V100 GPUs with a batch size of 32, employing
AdamW [10] optimizer with a default learning rate of 10−4

and a decreased learning rate of 10−5 for ResNet-50. EGTR
is trained on 8 V100 GPUs with a batch size of 64, using
a learning rate of 2 × 10−4 for the relation extractor and
scaling down the learning rates for the object detector and
ResNet-50 by 100 and 1000 times, respectively. Following
the original DETR training scheme, we adopt a learning rate
schedule that reduces the learning rate by a factor of 10 af-
ter the model has trained to some extent. Instead of a fixed
learning schedule, we apply an adaptive schedule through
early stopping. For the object detector pretraining, we set
the maximum number of epochs to 150 for the first schedule
and 50 for the second schedule. In the main EGTR training,
we configure the first schedule for 50 epochs and the sec-
ond schedule for 25 epochs. For the hyperparameters of the
bipartite matching and object detection loss, we follow the
configurations of the original Deformable DETR. λc, λb,
λIoU, and λL1 are set to 2, 1, 2, and 5, respectively. For
Open Images V6, we only apply hard negative sampling,
which is assumed to contribute to mAP performance.

4. Additional Results
4.1. Ablation Studies

Relation Function. We conduct an ablation study on the re-
lation function f , as presented in Tab. 1. To evaluate the im-
pact of different relation functions, we conduct experiments

λrel 5 10 15 20

R@50 29.1 29.1 29.4 28.8
mR@50 7.3 7.3 7.3 7.0

Table 3. Experiments for relation extraction loss coefficient
λrel. We fix λcon to 0 and conduct experiments on λrel first.

λcon 0 15 30 45

R@50 29.4 29.7 30.2 29.6
mR@50 7.3 7.4 7.9 7.4

Table 4. Experiments for connectivity prediction loss coeffi-
cient λcon. λrel is set to the optimal value 15 from Tab. 3.

using only the self-attention relation sources [R1
a; ...;R

L
a ]

without the final relation source Rz . Furthermore, we do not
use linear weights W l

S and W l
O for relation source represen-

tations; therefore, using the dot product attention function
entails utilizing the self-attention weights in their original
form. Surprisingly, using only the attention weights of the
object detector shows consistently high results, supporting
our hypothesis that self-attention contains information rele-
vant to relations. Additionally, excluding only the softmax
function from dot product attention significantly improves
performance. We also explore different element-wise func-
tions for the relation function, including Hadamard product,
sum, and concat. Among these, concat, which preserves the
representations of attention query and key, exhibits the best
performance.
Connectivity Prediction. We perform ablation studies on
the connectivity loss Lcon used during training and the con-
nectivity score employed during inference. As outlined
in Tab. 2, both connectivity loss and connectivity score con-
tribute to the performance improvements. These findings
indicate that connectivity loss serves as a hint loss for the re-
lation extraction loss, and the connectivity score effectively
filters out candidates of object pairs that are less likely to
have relations.

4.2. Model Selection

Loss Function. Due to the vast search space for the hy-
perparameters of the loss function, we first set the connec-
tivity prediction loss coefficient λcon to 0 and explore the
relation extraction loss coefficient λrel in increments of 5,
which is the bounding box L1 loss coefficient λL1, as shown
in Tab. 3. Then we explore λcon in multiplies of tuned λrel
as shown in Tab. 4. Since the relation tensor is sparse, rela-
tively high loss coefficients improve the performance.
Adaptive Smoothing. To choose a hyperparameter α rep-
resenting the minimum uncertainty for adaptive smoothing,



α R@50 mR@50

10−13 30.1 7.8
10−14 30.2 7.9
10−15 30.0 7.8

Table 5. Experiments for adaptive smoothing hyperparame-
ter α. We set the hyperparameter range of α with the validation
uncertainty of the initialized model. Hyperparameters within the
range have similar performances; however, 10−14 shows the best
performance.

kneg knon R@50 mR@50

10 10 29.6 8.2
20 20 29.9 8.2
40 40 30.0 8.1
80 80 30.2 7.9

160 160 29.9 7.7

Table 6. Experiments for sampling hyperparameter kneg and
knon. We choose kneg and knon as 80 which shows the best R@50.

we first set the hyperparameter range for α. Since the un-
certainty measured through the bipartite matching is sen-
sitive to related configurations such as the number of ob-
ject queries N and weights used to calculate matching cost
Lmatch, we devise the method to explore the hyperparame-
ter range in advance. We find the hyperparameter range by
measuring the validation uncertainty when the model is ini-
tialized. To reflect the situation in which the model is initial-
ized with random weights, the hyperparameter range is cho-
sen so that the valid uncertainty can cover a wide range be-
tween 0 and 1. We experiment with α of 10−13, 10−14, and
10−15 corresponding to valid uncertainties of 0.844, 0.487,
and 0.135, respectively. Results shown in Tab. 5 demon-
strate that the performance is relatively robust regardless
of the hyperparameters. Judging from the fact that 10−14

where initial valid uncertainty is 0.487 performs the best,
setting initial valid uncertainty close to 0.5 might be suit-
able for the situation where the model weights are randomly
initialized.
Sampling Methodology. We explore hyperparameters kneg
and knon for negative sampling and non-matching sampling,
respectively. To narrow down the hyperparameter range, we
set kneg equal to knon. Results in Tab. 6 illustrate a trade-
off, where increasing the sampling coefficients enhances
the amount of information on triplets not representing the
ground truth relations, and decreasing the coefficient re-
duces the sparsity of the ground truth relation graph. We
select kneg and knon as 80, yielding the best R@50.

In addition to sampling hyperparameters, we perform
comprehensive experiments on sampling options, as pre-

kneg knon R@50 mR@50

0 80 29.4 7.4
80 80 30.2 7.9
- 80 30.0 7.9

80 0 29.7 6.8
80 80 30.2 7.9
80 - 29.8 7.2

- 0 29.7 7.0
- - 29.7 7.2
0 - 29.2 6.8

Table 7. Experiments for sampling options. “-” denotes that we
use the whole region without sampling. 0 indicates that the region
is not considered. Sampling from both negative and non-matching
regions shows the best performance.

sented in Tab. 7. For the negative region and non-matching
region, we explore the following three options: one that
considers the entire region without sampling (-), another
that considers only a portion of it through sampling (80),
and a third that does not consider the region (0). The re-
sults indicate that considering the entire region or ignoring
it is suboptimal, and sampling in both regions is crucial for
performance.

4.3. Analysis

Backbone. To observe whether the performance improves
with a heavier backbone, we conduct experiments using
ResNet-101 as the backbone instead of ResNet-50. It shows
improved object detection performance and relation extrac-
tion performance: AP50 32.3 (+1.5), R@50 30.8 (+0.6),
and mR@50 8.1 (+0.2). However, the improvement in
the relation extraction performance is relatively lower com-
pared to the enhancement in the object detection perfor-
mance. We speculate that the capacity of the Transformer
decoder might be more crucial than the CNN backbone for
the performance of the relation extraction.
Adaptive Smoothing. Since proposed adaptive smoothing
can be applied to any one-stage SGG model that utilizes
the explicit object detector, we apply the technique to Rela-
tionformer [12] and SGTR [7], where object detection loss
is used and detected objects are related to relation extrac-
tion. We conduct experiments using publicly available code
and adapt the technique based on the characteristics of each
model. Since Relationformer uses softmax cross-entropy
with an additional “no relation” class for the relation ex-
traction, we apply smoothing for the ground truth relation
class and compensate the target value of the “no relation”
class by the same amount. In our reproduced experiments,
it shows improved performance: R@50 26.61(+0.12),
mR@50 8.54(+0.71), and ng-R@50 28.84(+0.76) where
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Figure 1. The comparison of predicate category distribution based on graph regions. We compare the predicate categories of GT, hard
negatives, and hard non-matchings for the validation dataset using histograms. We sort the predicate categories based on their frequency
in the training dataset.

ng denotes no graph constraints. Since SGTR matches de-
tected objects with triplets through graph assembling, we
apply relation smoothing on predicate labels based on the
uncertainties of the detected objects matching the subjects
and objects in triplets. Our smoothing method enhances
overall performance: R@50 24.36(+0.04) and mR@50
12.88(+0.75). The results demonstrate the generality of the
adaptive smoothing. Exploring the possibility of applying
the adaptive smoothing based on matching costs of subjects
and objects for triplet detection models that do not use an
explicit object detector could be an interesting avenue for
future research.
Sampling Methodology. We compare the distribution
of predicate categories for hard negatives and hard non-
matchings with that of the GT as shown in Fig. 1. Since the
non-matching region is composed of object candidates that
do not match with the ground truth objects and object candi-
dates that closely resemble ground truth objects are selected
as hard non-matchings, hard non-matchings exhibit a preva-
lence of the head predicate categories similar to the GT. On
the contrary, hard negatives exhibit a relatively lower pro-
portion of the head categories, and tail categories are more
frequently selected. As the negative region is constructed
from object candidates that match the ground truth objects,
it seems that hard negatives are selected from tail classes
that are likely to exist in reality but are not annotated.
Gated Sum. We examine the utilization of relation source
representations from each layer in the gating mechanism
on Fig. 2. Remarkably, the gate values for the first self-
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Figure 2. Aggregated gate values from all layers. We aggregate
the N × N shaped gate matrices for each layer and report the
average over the entire validation dataset.

attention source representations, which precede the cross-
attention layer and do not utilize any image information,
are close to 1.0. Since object queries are trained to reflect
the diverse distribution of objects in the training data [13],
the relationship information between object queries appears
to be utilized as a primary bias, reflecting the various ob-
ject relationships in the training data. After passing through
the cross-attention layer once, the gate values of the second
self-attention source representations are very low. However,
they gradually increase as the model incorporates image in-



Model Backbone # of params (M) FPS MACs (G)

FCSGG [9] - 87.1 6.0 655.7

RelTR [2] DETR-50 63.7 13.4 67.6

SGTR [7] DETR-101 117.1 6.2 127.0
Iterative SGG [4] DETR-101 93.5 6.0 130.3

Relationformer [5] DDETR-50 92.9 8.5 336.7
EGTR (Ours) DDETR-50 42.5 14.7 132.4

SSR-CNN [15] SRCNN-X101-FPN 274.3 4.0 297.7

Table 8. Efficiency of one-stage SGG models. In addition to
FPS, we measure MACs, which account for theoretical complex-
ity. “-50” represents ResNet50, “-101” denotes ResNet-101, and
“-X101-FPN” signifies ResNeXt-101-FPN [16]. “DDETR” corre-
sponds to Deformable DETR [20], and “SRCNN” corresponds to
Sparse-RCNN [13]. For a fair comparison, the image size is set to
a minimum of 600 for the shortest side and a maximum of 1000
for the longest side. FPS is measured in a single V100.

formation well. In particular, from the fourth self-attention
source representations, the gate values are higher than those
of the relation source representations in the final layer.

4.4. Efficiency

As depicted in Tab. 8, we report Multiply-ACcumulation
(MACs) to assess efficiency in addition to the number of pa-
rameters and frames per second (FPS). MACs quantify the
number of multiply and accumulate operations performed
by a neural network during the inference phase. It is worth
noting that MACs are estimated to be roughly half the num-
ber of Floating Point Operations (FLOPs). For a fair com-
parison, the image size is set to a minimum of 600 for the
shortest side and a maximum of 1000 for the longest side.

It seems that EGTR has relatively high MACs, consider-
ing the superior efficiency in terms of the number of param-
eters and FPS. However, it is noteworthy that our MACs
are primarily attributed to the Deformable DETR back-
bone, and additional MACs from our relation extractor are
only 16.8G. With 100 object queries, Deformable DETR-50
shows 115.0G MACs, compared to DETR-50 with 56.1G.
Although Deformable DETR has more than twice the the-
oretical complexity compared to DETR, we opt for De-
formable DETR due to its notably enhanced convergence
speed [20]. Leveraging Deformable DETR as a backbone,
we use a lightweight relation extractor composed of only
2.5M parameters, resulting in the fastest inference speed.

4.5. PredCls & SGCls

To assess how well the model can capture the structure of
the scene given the ground truth objects information, we
provide results for PredCls and SGCls. As they were in-
troduced in the two-stage SGG models to measure relation
prediction given ground truth objects, measuring them in

Models AP50 R@50 mR@50

FCSGG [9] 28.5 41.0 / 23.5 / 21.3 6.3 / 3.7 / 3.6
RelTR [2] 26.4 36.0 / 30.5 / 25.2 10.8 / 9.3 / 8.5

EGTR (Ours) 30.8 54.3 / 39.8 / 30.2 16.6 / 11.9 / 7.9

Table 9. Comparison with one-stage SGG models on Visual
Genome test set. We report results for PredCls, SGCls, and
SGDet settings, separated by “/”. Italic denotes that we remea-
sured the score with a publicly available model checkpoint for a
fair comparison: the ground truth objects are utilized rather than
ground truth triplets in the original RelTR report.
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Figure 3. Qualitative Analysis. For visualization, we select
the same number of predicted triplets as the ground truth triplets
within the Visual Genome validation dataset.

one-stage SGG models may involve some arbitrariness. We
reviewed one-stage studies [2, 9] that had reported Pred-
Cls and SGCls, and carefully designed measurements for
one-stage SGG models. We perform bipartite matching for
object queries with ground truth objects and replace the pre-
diction of the matched object queries with the correspond-
ing ground truth objects’ labels. Note that the representa-
tions of object queries used for the relation prediction re-
main unchanged. As shown in Tab. 9, EGTR performs well
in both PredCls and SGCls settings. It demonstrates that
SGDet performance of EGTR does not solely depend on
high object detection performance but also relation extrac-
tion performance.

4.6. Zero-shot Performance

We have noticed that popular technique frequency base-
line [18] directly influences the zero-shot performance in
our model. Without the frequency baseline, EGTR demon-
strates a commendable zR@50 performance with a score of
2.1 despite a decrease of 0.2 points in R@50 and 0.6 points
in mR@50.

4.7. Qualitative Results

In Fig. 3, we present qualitative examples of the Visual
Genome validation dataset. The depicted results illustrate
the capability of our methodology to generate relationships
that are both plausible and semantically rich.
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