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Supplementary Material

Overview
This supplementary document contains additional results

and discussions. Summarily, Section 1 provides analysis
on varying values of λ which defines the ratio of blend-
ing between a fractal image and a hybrid image in DIF-
FUSEMIX. Section 2 provides comparisons of augmen-
tation overhead between DIFFUSEMIXand existing image
augmentation strategies with respect to their generaliza-
tion performances. Section 3 discusses examples of poorly
constructed prompts and their effects on image generation.
Section 4 provides experimental results of using differ-
ent masking strategies of the state-of-the-art methods with
DIFFUSEMIX. Section 5 provides the convergence analy-
sis of DIFFUSEMIX. Section 6 provides more visualiza-
tions of the augmented training images obtained using DIF-
FUSEMIX. Section 7 provides a complete list of general
and fined-grained results. Section 8 provides some visual
examples of the collected fractal image dataset.

1. Fractal Blending Ratio
We experiment and observe the effect of varying fractal
blending ratio λ in DIFFUSEMIX and report Top-1 accuracy
(%) results on Flower102 dataset in Table 10. The values of
λ are varied from 0.1 to 0.5. A higher value of λ indicates
a stronger ratio of fractal image blending.

The baseline, ResNet50 without any augmentation,
yields a top-1 accuracy of 78.73%. Compared to this, DIF-
FUSEMIX yields consistent performance gains with all val-
ues of λ. The best performance of DIFFUSEMIX is observed
at λ = 0.2, where the top-1 accuracy peaks at 81.30%.
However, generally, the performance remains better with a
reasonable value of λ. It starts dropping when the value of
λ becomes too high. This suggests that higher fractal blend-
ing ratios may introduce too much complexity or noise into
the original data, which adversely affects the model’s per-
formance.

2. Augmentation Overhead
We compare the computational overhead of several existing
SOTA image augmentation methods and DIFFUSEMIX with
respect to the performance gains. Following Kang et al.
[21], we define the augmentation overhead AO as:

AO =
Taug − Tvan
Tvan

× 100(%),

where T is the total image generation and training time, and
Tvan is the training time of the baseline network without any
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Figure 6. Augmentation overhead (+%) - accuracy (%) plot on
CUB-200-2011 dataset with batch size 32.

Table 10. Impact of varying fractal blending ratio in DIF-
FUSEMIX. Top-1 accuracy is reported using ResNet-50 on
Flower102 dataset.

Methods Top-1 (%)
ResNet50(CVPR’16) [14] 78.73
+ DiffuseMix (λ = 0.1) 79.81
+ DiffuseMix (λ = 0.2) 81.30
+ DiffuseMix (λ = 0.3) 80.97
+ DiffuseMix (λ = 0.4) 79.16
+ DiffuseMix (λ = 0.5) 78.97

augmentation. Although image generation process in DIF-
FUSEMIX can be expedited by using parallel-processing,
We do not utilize it to provide a fair comparison. It can
be seen in Figure 6 that DIFFUSEMIX provides a good
tradeoff between performance and augmentation overhead
by outperforming all existing approaches in terms of accu-
racy while providing significantly lower augmentation over-
head compared to Co-Mixup and SaliencyMix approaches.
Moreover, DIFFUSEMIX can also be optimized further by
saving the generated images offline once before carrying
out any number of subsequent trainings. This may make
it significantly faster to perform several experiments on a
training model, particularly for optimization and research
purposes.

3. Prompt Selection
Diffusion Models rely heavily on prompts [12]. There-
fore, the intuition behind designing our bespoke conditional



(a) Stanford Cars (b) FGVC Aircraft (c) CUB-200-2011 (d) Oxford 102 Flower (e) CIFAR100

Sunset photo that looks like
it’s taken with 1990s camera

A painting that is too small
for its body

A cityscape that is too dark to
see anything

Photograph that is washed it
looks like it is made of paper

A distorted, warped painting
of a landscape

Figure 7. First row: original training image samples from different datasets such as Oxford-102 Flower [36], Stanford Cars [24], and
Aircraft [33], CUB-200-2011, and CIFAR100. Second row: Corresponding generated images show that the usage of descriptive prompts
(blue text) results in poor images not feasible for training. When generating images on the CIFAR100 dataset, several additional challenges
may occur due to the small size of the images. For example, the image in the last column taken from CIFAR-100 with its corresponding
prompt results in a black image containing no visible output.

prompts is to introduce the type of prompts that may edit the
image in a way that preserves structural information and can
easily be applied to a range of diverse datasets. To this end,
as described in the manuscript, we propose to use filter-like
prompts such as snowy, sunset, rainbow, etc. and demon-
strate their effectiveness in training robust classifiers.

Conversely, in this section, we discuss bad prompts that
may not be a good fit for the image generation step of DIF-
FUSEMIX. Some examples of such prompts are shown in
Figure 7. More descriptive and overly complicated prompts
generate images that may be too different from the original
distribution. The resultant images contain unrealistic fore-
grounds and backgrounds, rendering these useless for the
training of a classifier. This reiterates the importance of our
proposed filter-like bespoke conditional prompts that do not
induce unwanted changes to the training images.

4. DIFFUSEMIX with SOTA Methods
In a series of experiments, we combine DIFFUSEMIX with
existing image augmentation approaches [46, 49] to see if
any performance gain is observed. Particularly, We replace
our masking approach with the masking used in the exist-
ing methods while retaining the rest of the pipeline of DIF-
FUSEMIX same.

For CutMix + DIFFUSEMIX, we replace the concatena-
tion step of DIFFUSEMIX with the random cropping of Cut-
Mix. To this end, we randomly crop a patch from the gener-

ated image and paste it onto the original image whereas the
other stages remain the same. For Mixup + DIFFUSEMIX,
we replace concatenation with the pixel blending of origi-
nal and generated images as proposed in [49] while the rest
of the steps remain intact. The results are summarized in
Table 11. Using CutMix [46] or Mixup [49] methods yields
improvements over baseline ResNet50 training. However,
when our proposed approach is added to the existing meth-
ods, further performance gains are observed. Top perfor-
mance is finally observed with our DIFFUSEMIX, which
demonstrates the importance of forming hybrid images by
concatenating original and generated images.

Table 11. Combining DIFFUSEMIX with SOTA image augmen-
tation methods by replacing the image concatenation technique
of DIFFUSEMIX with the masking techniques proposed in [46]
& [49]. While DIFFUSEMIX provides consistent gains in these
settings, the best performance of 81.30% is achieved when our
originally proposed method is used.

Method Top-1 (%)
ResNet50(CVPR’16) [14] 78.73
+ CutMix [46] 79.22
+ CutMix [46] + DIFFUSEMIX 79.58
+ Mixup [49] 79.34
+ Mixup [49] + DIFFUSEMIX 80.20
+ DIFFUSEMIX 81.30
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Figure 8. On left side: The curves of top-1 and top-5 accuracy show an increasing trend during initial 60 epochs and remain stable
towards the end on Flower102 dataset. This same behavior can also be seen in top-5 accuracy. —our enables smoother training and
better convergence while avoiding overfitting. On right side: Similar to the accuracy plots, using DIFFUSEMIX demonstrates a smoother
decrease in validation error compared to ResNet50 or other variants. Best viewed in color.

5. DIFFUSEMIX Convergence

Analysis on Top-1 and Top-5 Accuracy: In a series of ex-
periments, we carry out an ablation to observe the top-1 and
top-5 accuracies of DIFFUSEMIX and its variants formed by
removing the components (generation, concatenation, and
fractal blending) one by one.

As seen in Figures 8a and 8b, the RES50+DIFFUSEMIX
demonstrates generally better performance with conver-
gence at 77.26% accuracy, closely followed by DIF-
FUSEMIX+GEN+CON at 75.79%, and Res50 at 76.41%.
The DIFFUSEMIX+GEN model performs significantly
lower yielding 73.96% accuracy. As discussed in the
manuscript Section 4, using generated images directly for
the training may lead to deteriorated performance, which is
re-validated in these experiments. This also shows the im-
portance of each step proposed in DIFFUSEMIX towards ro-
bust training more robust classifiers. Overall, similar trends
are observed in Top-5 accuracy results (Figure 8b).

Analysis on validation loss: As seen in (Figure 8c), it is
clearly noticeable that DIFFUSEMIX helps in model conver-
gence and overall smooth decrease in validation loss during
training. Res50 baseline shows a good start with lower ini-
tial loss. However, its loss starts fluctuating once the train-
ing is continued indicating a potential plateau in learning
or its limitation in capturing more complex patterns. Com-
pared to all variants, Res50+DIFFUSEMIX benchmarks bet-
ter convergence.

6. DIFFUSEMIX Visualizations

In this section, we provide more visual examples of train-
ing images obtained using DIFFUSEMIX. As seen in Fig-
ure 9, visualizing examples from Flower102 dataset, DIF-
FUSEMIX enhances the overall variation of the images
while retaining the interpretability of each example. For
Caltech-UCSD Birds-200-2011 (Figure 10), compared to

Table 12. Top-1 and Top-5 general classification accuracies com-
parison using PreActResNet-18. Compared numbers are taken ei-
ther from the original papers or from [21].

Tiny-ImageNet CIFAR-100

Method
Top-1

Acc (%)
Top-5

Acc (%)
Top-1

Acc (%)
Top-5

Acc (%)
Vanilla [14] 57.23 73.65 76.33 91.02
Mixup [49] 56.59 73.02 76.84 92.42
Manifold [42] 58.01 74.12 79.02 93.37
CutMix [46] 56.67 75.52 76.80 91.91
AugMix [15] 55.97 74.68 75.31 91.62
PixMix [17] - - 79.70 -
SaliencyMix [41] 56.54 76.14 79.75 94.71
Guided-SR [21] 55.97 74.68 80.60 94.00
PuzzleMix [23] 63.48 75.52 80.38 94.15
Co-Mixup [22] 64.15 - 80.15 -
Guided-AP [21] 64.63 82.49 81.20 94.88
DIFFUSEMIX 65.77 83.66 82.50 95.41

original images, the augmented images obtained using DIF-
FUSEMIX exhibit greater clarity and diverse contexts. Sim-
ilar visual features can be observed in Figure 11 and Figure
12 showcasing examples from Cars and Aircraft datasets,
respectively.

7. Performance Evaluation
Extended versions of the performance tables are provided
in this section.

7.1. General Classification

In Table 12, Vanilla method serves as our baseline, achiev-
ing Top-1 accuracies of 57.23% and 76.33% on Tiny-
ImageNet and CIFAR-100 respectively, setting a bench-
mark for subsequent comparisons. For Mixup, we observe a
slight decline in performance on Tiny-ImageNet to 56.59%
Top-1 accuracy but a marginal improvement on CIFAR-
100, reaching 76.84%. Conversely, Manifold Mixup marks



(a) Poinsettia (b) Barbeton Daisy (c) Gazania (d) Dandelion (e) Magnolia

(f) Poinsettia Autumn (g) Barbeton Daisy Snowy (h) Gazania Crayon Sketch (i) Dandelion Crayon Sketch (j) Magnolia Crayon Sketch

Figure 9. Illustration of original training images and DIFFUSEMIX augmented images from the Oxford Flower102 dataset. First row:
showcases original, unaltered images of various flowers, including poinsettia, barbeton daisy, gazania, dandelion, and Magnolia classes.
Second row: illustrates the transformative effects of the DIFFUSEMIX augmentation method. The effects of our custom-tailored prompts-
based generation are visible on the generated portion of each image. Overall, DIFFUSEMIX results in a diverse array of images with
sufficient structural complexity and diversity to train robust classifiers.

notable performance gains, especially on CIFAR-100 with a
Top-1 accuracy of 79.02%. CutMix slightly improves over
the baseline on Tiny-ImageNet, whereas AugMix shows a
decrement, particularly on CIFAR-100 with a 75.31% Top-
1 accuracy.

PixMix introduces variations in the source image in-
stead of mixing two input images. Compared to baseline,
PixMix excels on CIFAR-100 with a 79.70% Top-1 accu-
racy. SaliencyMix, which uses saliency to mix different por-
tions of images, also shows promising results. Particularly
on CIFAR-100, it achieves a Top-1 accuracy of 79.75%.
The Guided-SR method performs slightly lower compared
to AugMix on Tiny-ImageNet but stands out on CIFAR-100
with 80.60% Top-1 accuracy, indicating its effectiveness.
PuzzleMix and Co-Mixup introduce more complex ways to
augment data, with PuzzleMix reaching a notable 63.48%
Top-1 accuracy on Tiny-ImageNet. Co-Mixup tops these
methods on Tiny-ImageNet with 64.15% Top-1 accuracy
but does not maintain this lead on CIFAR-100. Guided-AP
pushes the performance boundaries further by achieving su-
perior accuracies among its predecessors, e.g., 81.20% Top-
1 accuracy on CIFAR-100.

DIFFUSEMIX, our proposed method, which surpasses all
prior techniques by securing the highest accuracies: 65.77%
Top-1 on Tiny-ImageNet and 82.50% Top-1 on CIFAR-
100. Our approach not only surpasses the conventional
mixup strategies but also sets a new standard in enhanc-
ing the generalization of deep learning models. The per-

Table 13. Top-1 and Top-5 accuracies comparison on ImageNet
using ResNet-50. Compared numbers are taken either from the
original papers or from [21].

Method Top-1
Acc.

Top-5
Acc.

Vanilla(CVPR’16) [14] 75.97 92.66
AugMix (ICLR’20) [15] 76.75 93.30
Manifold(ICML’19) [42] 76.85 93.50
Mixup(ICLR’18) [49] 77.03 93.52
CutMix(ICCV’21) [46] 77.08 93.45
Guided-SR(AAAI’23) [23] 77.20 93.66
PixMix(CVPR’22) [17] 77.40 -
PuzzleMix(ICML’20) [23] 77.51 93.76
GuidedMixup (AAAI’23) [21] 77.53 93.86
Co-Mixup(ICLR’21) [22] 77.63 93.84
YOCO(ICML’22)[13] 77.88 -
Azizi et al.(arXiV’23) [1] 78.17 -
DIFFUSEMIX 78.64 95.32

formance of DIFFUSEMIX stays consistent across the com-
pared datasets, underlining its superior capability and effi-
ciency.

In Table 13, we provide a comparison of various meth-
ods in terms of Top-1 and Top-5 accuracies on ImageNet,
specifically when training ResNet-50 as per the training
configuration of in Kang and Kim [21]. It starts with
the baseline Vanilla ResNet model, showing accuracies of
75.97% for Top-1 and 92.66% for top-5. Various tech-
niques, including Azizi et al., AugMix, Manifold, Mixup,
CutMix, Guided-SR, PixMix, PuzzleMix, GuidedMixup,



Table 14. Top-1 accuracy comparison on fine-grained visual clas-
sification task while training from scratch on ResNet-50.

Top-1 Accuracy (%)Methods CUB Aircraft Cars

au
to
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at

ed

Vanilla [14] 65.50 80.29 85.52
Auto Aug [8] - 82.28 88.04
Fast AA [31] - 82.20 87.19
DADA [28] - 81.16 87.14
RA [9] - 82.30 87.79
AdaAug [5] - 82.50 88.49

m
ix

up
fa

m
ily

Mixup [49] 71.33 82.38 88.14
CutMix [46] 72.58 82.45 89.22
SaliencyMix [41] 66.66 83.14 89.04
Guided-SR [21] 74.08 83.51 89.23
SnapMix [19] 75.53 82.96 90.10
PuzzleMix [23] 74.85 82.66 89.68
Co-Mixup [22] 72.83 83.57 89.53
GuidedMixup [21] 77.08 84.32 90.27
DIFFUSEMIX 79.37 85.76 91.26

Co-Mixup, YOCO, and another entry from Azizi et al., dis-
play a range of improvements, with Top-1 accuracies span-
ning from 69.24% to 78.17% and top-5 accuracies (when
provided) ranging up to 93.86%. The most notable perfor-
mance is observed in the DIFFUSEMIX method, which out-
performs the others by achieving the highest accuracies at
78.64% for top-1 and 95.32% for top-5.

7.2. Fine-Grained Visual Classification

Table 14 presents a comparison of Top-1 accuracy of vari-
ous methods on a fine-grained visual classification task, us-
ing ResNet-50. The methods are categorized into two main
groups: automated methods and the mixup family, and are
evaluated across three datasets: CUB, Aircraft, and Cars.

In the automated data augmentation, the Vanilla method
achieves 65.50%, 80.29%, and 85.52% accuracy on CUB,
Aircraft, and Cars respectively. Other automated meth-
ods like Auto Aug, Fast AA, DADA, RA, and AdaAug
show varied performance, with AdaAug topping this cat-
egory with accuracies of 82.50% for Aircraft and 88.49%
for Cars. The mixup family methods show a notable per-
formance improvement, particularly GuidedMixup demon-
strating the accuracies of 77.08%, 84.32%, and 90.27%
on the three datasets respectively. Nevertheless, our
DIFFUSEMIX stands out by outperforming all compared
methods significantly, achieving the highest accuracies of
79.37% for CUB, 85.76% for Aircraft, and 91.26% for
Cars.

This indicates that while both categories of methods en-
hance performances, mixup family methods demonstrate
superior capability in handling fine-grained visual classifi-
cation tasks. DIFFUSEMIX, in particular, showcases excep-
tional improvements, suggesting its effectiveness in extract-
ing nuanced features from the images.

Table 15. Top-1 accuracy on data scarcity experiment using
Flower102 dataset where only 10 random images per class are
used. Experiments are performed with ResNet-18 network.

Methods Valid (%) Test (%)
Vanilla(CVPR’16)[14] 64.48 59.14
Mixup(ICLR’18) [49] 70.55 66.81
CutMix(ICCV’19) [46] 62.68 58.51
SaliencyMix(ICLR’21) [41] 63.23 57.45
Guided-SR(AAAI’21) [21] 72.84 69.31
SnapMix(AAAI’21) [19] 65.71 59.79
PuzzleMix(ICML’20) [23] 71.56 66.71
Co-Mixup(ICLR’21) [22] 68.17 63.20
GuidedMixup(AAAI’23) [21] 74.74 70.44
DIFFUSEMIX 77.14 74.12

7.3. Data Scarcity

Table 15 presents the Vanilla method as a baseline with
64.48% accuracy on the validation set and 59.14% on the
test set. SOTA techniques like Mixup and PuzzleMix show
improved accuracies, with Mixup achieving 70.55% on val-
idation and 66.81% on the test set, and PuzzleMix reaching
71.56% and 66.71%, respectively.

Notably, the Guided-SR and GuidedMixup methods sig-
nificantly outperform other approaches, with GuidedMixup
achieving the highest accuracies of 74.74% on validation
and 70.44% on the test set. Our DIFFUSEMIX, which sur-
passes all compared methods, demonstrates remarkable ac-
curacies of 77.14% on the validation and 74.12% on the
test set, showcasing its superior ability to generalize well
from significantly limited data. This evidence suggests that
data augmentation and mixing techniques, especially DIF-
FUSEMIX, are highly beneficial in enhancing model perfor-
mance under stringent data constraints.

7.4. Self-Supervised Learning

Table 16 showcases the Top-1 accuracy of self-supervised
learning methods, specifically comparing the performance
of MoCo v2 and SimSiam.

Initially, MoCo v2 exhibits accuracies of 80.31%,
40.82%, and 51.36% on Flower102, StanfordCars, and
Aircraft datasets. After applying DIFFUSEMIX augmen-
tation, it performs better by demonstrating accuracies of

Table 16. Top-1 (%) accuracy of self-supervised learning methods.
Adding DIFFUSEMIX yields better performance.

Method Flower102 Stanford Cars Aircraft
MoCo v2 80.31 40.82 51.36
+ DIFFUSEMIX 82.15 41.73 53.28
SimSiam 86.93 48.34 40.37
+ DIFFUSEMIX 89.24 49.17 42.63



Mixup CutMix AugMix Outlier PixMix DIFFUSEMIX

Corruptions 48.0 51.5 35.4 51.5 30.5 28.5
Consistency 9.5 12.0 6.5 11.3 5.7 5.1
Adversaries 97.4 97.0 95.6 97.2 92.9 90.2
Calibration 13.0 29.3 18.8 15.2 8.1 7.7
Anomaly Det. 71.7 74.4 84.9 90.3 89.3 88.3

Table 17. On CIFAR-100, DIF-
FUSEMIX outperforms SOTA on 4 of
the 5 distinct safety metrics. Lower
is better except for anomaly detection.
(SOTA method results are taken from
PixMix [17]).

82.15%, 41.73%, and 53.28%. SimSiam starts with ac-
curacies of 86.93%, 48.34%, and 40.37%. Adding DIF-
FUSEMIX as an augmentation method improves the perfor-
mance to 89.24%, 49.17%, and 42.63%. This clearly il-
lustrates that integrating DIFFUSEMIX significantly boosts
the performance, demonstrating its effectiveness in enhanc-
ing self-supervised learning models. The systematic gains
across different datasets and on multiple methods highlight
the robustness of our approach and its potential to improve
the accuracies of different machine learning models.

7.5. Safety Measures

Table 17 showcases a comparative analysis of several data
augmentation methods on the CIFAR-100 dataset, focusing
on their performance across five different safety metrics.
The methods evaluated include Mixup, CutMix, AugMix,
Outlier, PixMix, and DIFFUSEMIX. The results highlight
DIFFUSEMIX’s superior performance, as it outperforms the
state-of-the-art (SOTA) previously established by PixMix in
four out of the five categories. DIFFUSEMIX demonstrates
better performance in cases of corruptions, consistency, ad-
versaries, and calibration. In the case of Anomaly detection
task, our approach demonstrates comparable performance.

8. Fractal Dataset
We collected a dataset of 100 fractal images containing
complex patterns and scales. Blending these images to
the training images introduces a level of abstraction and
complexity not commonly found in regular training images.
Some of the example fractal images are provided in Fig-
ure 13. As discussed extensively in the manuscript, fractal
blending in DIFFUSEMIX helps the network generalize bet-
ter by adding contained noise or perturbations. The ablation
studies reported in our manuscript and supplementary sug-
gest that utilizing fractal blending with the generated im-
ages helps stabilizing the training and improves the overall
convergence.

8.1. Fractal with SOTA Methods

Table 18 presents a performance analysis, particularly fo-
cusing on the impact of blending fractals with different
augmentation methods using CUB-Birds, Aircraft, Stanford
Cars, and Flower102 datasets.

Adding fractal blending to the baseline results in per-
formance improvements on CUB-Birds, Aircraft, and Stan-

Table 18. Performance comparison (%) of fractal blending with
baseline and other augmentation methods, it is more effective
when fractals are blended with our hybrid images Hiju.

Method CUB-Birds Aircraft Cars Flower

Baseline 65.50 80.29 85.52 78.73
+ FRACTAL 66.17 81.27 86.73 78.34

Mixup 71.33 82.38 88.14 78.12
+ FRACTAL 43.25 44.27 54.25 57.27

CutMix 72.58 82.45 89.22 74.36
+ FRACTAL 46.74 41.47 56.37 52.28

PuzzleMix 74.85 82.66 89.68 71.68
+ FRACTAL 51.61 53.38 61.42 63.73

Hybrid (Hiju) 80.27 85.31 90.59 79.22
+ FRACTAL 79.37 85.76 92.56 80.20

ford Cars, but a slight decrease in accuracy on the Flower
dataset. The baseline method shows performances of
65.50% on CUB-Birds, 80.29% on Aircraft, 85.52% on
Cars and 78.34% on Flower102. The Mixup, CutMix, and
PuzzleMix methods, when used without fractal, generally
show higher accuracy than the baseline, especially on the
Stanford Cars and Aircraft datasets. However, the integra-
tion of fractal blending with these methods leads to a sig-
nificant drop in performance across all datasets, suggesting
that fractal blending may not be properly aligned with these
particular augmentation techniques.

In contrast, when fractals are blended with the hybrid im-
ages (Hybrid Hiju) in our approach, performance improve-
ments are notably observed in three of the four datasets in-
cluding Aircraft, Stanford Cars, and Flower102. datasets,
this combination leads to improvements in accuracy, indi-
cating a positive synergy between the hybrid images and
fractal blending. However, there’s a slight decrease in accu-
racy for the CUB-Birds dataset.



(a) Eastern Towhee (b) Horned Lark (c) Rusty Blackbird (d) White Sparrow (e) European Goldfinch

(f) Eastern Towhee Sunset (g) Horned Lark Sunset (h) Rusty Blackbird Autumn (i) White Sparrow Snowy (j) Europe Goldfinch Snowy

Figure 10. Original and DIFFUSEMIX augmented bird images from the Caltech-UCSD Birds-200-2011 dataset. Top row: displays
a selection of original, high-resolution bird images, capturing the natural beauty and diversity of species such as the eastern towhee,
horned lark, rusty blackbird, white sparrow, and european goldfinch. Bottom row: demonstrates the augmented images obtained using
DIFFUSEMIX. The augmented images are visually striking and contextually varied representations of the original subjects.

(a) Lamborghini (b) Audi R8 (c) Bentley (d) Ford Edge (e) Audi S5

(f) Lamborghini Aurora (g) Audi R8 Rainbow (h) Bentley Autumn (i) Ford Edge Sunset (j) Audi S5 Snowy

Figure 11. First row: showcases original images from the Stanford Cars benchmark dataset, featuring unaltered depictions of various
car models including a lamborghini, audi R8, bentley, ford edge and audi S5. Second row: presents the images transformed using our
DIFFUSEMIX method. The effects of prompts are visible in the generated portions of the images. For example, lamborghini is changed to
green when aurora prompt is applied, creating a vibrant image. The front side of audi R8 becomes more color-rich when it is generated with
rainbow prompt. The ambiance (background context) of bentley transforms significantly when autumn prompt is used. Similar diverse
transformations are observed in other examples. These augmented images demonstrate the capability of DIFFUSEMIX in generating
visually enriched augmented images for better generalization.



(a) 737-200 (b) 727-200 (c) 737-700 (d) 777-200 (e) A330-300

(f) 737-200 Sunset (g) 727-200 Autumn (h) 737-700 Snowy (i) 777-200 Ukiyo (j) A330-300 Autumn

Figure 12. Illustration of original and DIFFUSEMIX augmented Aircraft images from the FGVC-Aircraft benchmark dataset. Top row:
presents original aircraft images, each portraying a distinct airplane including the 737 − 200, 727 − 200, 737 − 700, 777 − 200, and
A330−300. These images highlight the design resemblance of various aircraft models, serving as a challenging resource for aircraft fined-
grained image classification studies. Bottom row: showcases the augmented images obtained using DIFFUSEMIX for each corresponding
input image. As seen, DIFFUSEMIX reimagined each aircraft with unique prompts such as sunset, autumn, snowy and ukiyo resulting in a
rich visual appearance with diverse contexts. This also illustrates how image augmentation can be used to simulate different environmental
and stylistic scenarios, potentially enhancing the robustness and versatility of the dataset for training robust neural networks.

(a) Autumnal Fractal Patterns (b) Winter Wonderland (c) Sunset Hues (d) Ukiyo-e Inspired Fractal (e) Autumn Reimagined

(f) Snowflake Elegance (g) Dusk’s Fractal Canvas (h) East Meets West (i) Seasonal Shifts (j) Frozen Fractal Patterns

Figure 13. Some samples taken from our collected fractal dataset. Each subfigure represents a unique fractal image, demonstrating the
diversity and complexity inherently present in fractal geometry.
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