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Supplementary Material

A. Implementation Details

In Table 1 you can find the training details used in this
work. We evaluate each algorithm on trivial (36.00%,
59.04%, 73.80%), mild (83.22%, 89.30%, 93.12%) and
extreme (95.60%, 97.17%, 98.20%) sparsity ratios as
[21]. In each experiment, we use 100 rounds for iterative
PaI methods adopting an exponential schedule as [8, 19].
We train and test on the respective official splits of each
dataset, repeating each experiment three times.

Classification - Random initialization. For the classifi-
cation experiments starting from Kaiming Normal initial-
ization [10], we follow [19, 21]. The augmentations used
when training on CIFAR-10 and CIFAR-100 [12] are Ran-
dom Crop to 32×32 with padding 4 followed by Random
Horizontal Flipping with 0.5 probability. For the experi-
ments on Tiny-ImageNet [5], we augment the training im-
ages with Random Resized Crop to 64×64 with scaling go-
ing from 0.1 to 1.0 using 0.8 x-ratio and 1.25 y-ratio. Then,
we apply Random Horizontal Flipping with 0.5 probabil-
ity. On ImageNet [5], we apply Random Resized Crop to
224×224 with scaling going from 0.2 to 1.0 using 3/4 x-
ratio and 4/3 y-ratio. Then, we apply Random Grayscaling
with 0.2 probability, Color Jitter with brightness, contrast,
saturation and hue all set to 0.4. Finally, we apply Random
Horizontal Flipping with 0.5 probability.

Classification - Pre-trained models. Regarding the classi-
fication experiments when starting from ImageNet [5], Mo-
Cov2 on ImageNet [4] and CLIP [16] pre-trained models,
we align with [3]. Specifically, we use the same augmen-
tations detailed in the previous paragraph but we adjust the
cropping and rescaling transformations to ensure that the re-
sultant image size is set at 224×224 pixels, aligning with
the dimensions of the images used in obtaining the pre-
trained models.

Segmentation. For the semantic segmentation experiments
we again align with [3]. We employ the following augmen-
tations during training: Random Scale with a range between
0.5 and 2.0, Random Crop to 513×513, followed by Ran-
dom Horizontal Flipping with 0.5 probability.

Pre-trained models & Architectures. Regarding the pre-
trained models used in our experiments, we employed
the official ImageNet pre-trained model from the PyTorch
torchVision package [14]. The MoCov2 ImageNet model
we used is the official one from Facebook research1. The
CLIP pre-trained model is the official one from OpenAI2.
Finally, we base our experiments on DINO [1] from its of-
ficially released pre-trained model3.

Our code is based on the framework for Pruning-at-
Initialization provided by [19]. Moreover, we used their
implementations for the architectures used in our classi-
fication experiments. For the segmentation experiments,
we align with [3] and use the same implementation of
DeepLabV3+4.
Choice of the pruning set. To perform the foresight prun-
ing procedure using data-driven methods we employ a prun-
ing data split composed of ten examples per class, in line
with the work of [13, 21]. For the data-free strategies, we
use an equal amount of mini-batches.

B. Additional Discussions
In this section we provide the derivations and intuitions

about the mathematics used in the main submission, to
make it clear how the path-wise perspective can be stud-
ied via forward and backward passes on any architecture.
Note that in all of our derivations and formulas, we skip bias
terms as we embed them in the weight matrix by adding an
additional input set to 1 to each neuron.
Frobenius norm of the Path Activation matrix. In Eq.
(7) of the main submission we applied the definition of the
Frobenius norm on the Path Activation matrix

∥Jf
v (X)∥2F =

N∑
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I[p ∈ Ps→k]ap(xn,θ)xns
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We observe that by fixing a path p, the inner sum from s = 1

1https://github.com/facebookresearch/moco
2https://github.com/openai/CLIP
3https://github.com/facebookresearch/dino
4https://github.com/VainF/DeepLabV3Plus-Pytorch
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Dataset Architecture Optimizer LR LR Drop Momentum Weight Decay Epochs Batch Size
Classification - Kaiming Normal initialization [10]

CIFAR-10 [12] ResNet-20 [11] SGD [17] 0.1 x10 at epochs 80, 120 0.9 1e-4 160 128
CIFAR-100 [12] VGG-16 [18] SGD (Nesterov) [17] 0.1 x10 at epochs 60, 120 0.9 5e-4 160 128

Tiny-ImageNet [5] ResNet-18 [11] SGD [17] 0.2 x10 at epochs 100, 150 0.9 1e-4 200 256
ImageNet [5] ResNet-50 [11] SGD [17] 0.1 x10 at epochs 30, 60, 80 0.9 1e-4 90 448

Classification - ImageNet [5], MoCov2 on ImageNet [4], CLIP [16] pre-trained models
CIFAR-10 [12] ResNet-50 [11] SGD [17] 0.1 x10 at epochs 91, 136 0.9 1e-4 182 256

CIFAR-100 [12] ResNet-50 [11] SGD [17] 0.1 x10 at epochs 91, 136 0.9 1e-4 182 256
Tiny-ImageNet [5] ResNet-50 [11] SGD [17] 0.1 x10 at epochs 91, 136 0.9 1e-4 182 256

Segmentation - ImageNet [5], MoCov2 on ImageNet [4], DINO on ImageNet [1] pre-trained models
Pascal VOC2012 [6] DeepLabV3+ (ResNet-50) [2] SGD [17] 0.001 x10 at epochs 50, 60 0.9 1e-4 80 4

Table 1. Training setups used in this work.

Figure 1. Average mean Intersection over Union (mIoU) at different sparsity levels on Pascal VOC2012 using DeepLabV3+ with pre-
trained ResNet-50 as the backbone. Each experiment is repeated three times. Standard deviations are in shaded colors.

Pruning Computational Epochs to Reach Accuracy at
Method Complexity 98.20% Sparsity 98.20% Sparsity

IMP [7] O(1) 960 77.38
Single-shot PaI methods

Random O(1) 0 72.31
Magnitude O(1) 0 76.12
SNIP [13] B · ([FP ] + [BP ]) 0 75.39
GraSP [20] B · (2[FP ] + 2[BP ]) 0 76.30

Iterative PaI methods
SynFlow [19] T · ([FP ] + [BP ]) 0 75.19

NTK-SAP [21] T ·B · (3[FP ] + [BP ]) 0 74.55
PX (Ours) T ·B · (3[FP ] + [BP ]) 0 77.08

Table 2. Comparison of the computational complexity of each
pruning procedure. Last column is the accuracy at 98.20% sparsity
when starting from ResNet-20 on CIFAR-10.

to d will have only one non-zero term (given by the indica-
tor function). Specifically, the one for which s is the starter
input node: the other input nodes cannot take part in path
p as the first connection will define a different path. This
means that the equality reported in Eq. (7) of the main sub-
mission holds, provided that we take the correct input node
s|s ∈ p.

From layer-wise to path-wise. Here we provide the key
idea on how to pass from the layer-wise perspective to the
path-wise perspective when considering activations a ∈
Rm and parameters θ ∈ Rm. First of all, the relationship
between a and ap is given by the definition of the latter.
According to what we reported in Section 3.3 of the main
submission, ap(x,θ) =

∏
{i|θi∈p} I[zi > 0] where zi is

the activation of the neuron connected to the previous layer
through parameter θi. Thus, ap is a binary value represent-

ing the activation status of path p. This is equivalent to as-
signing a binary mask to each paramenter θj representing
the activation status of the neuron that it connects to (i.e.
aj(x,θ) = I[zj > 0]). This resulting binary-valued mask
is a. The expression of the k-th output of a neural network,
can be written as [9]

fk(x,θ) =

d∑
s=1
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=
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∏
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θjaj(x,θ)xs

=

[
L∏

l=1

θ[l]a[l](x,θ)x

]
k

where L is the total number of layers and l identifies the
parameters and the activations of the l-th layer. We can re-
cover the last equality observing that the second row of the
equation is the definition of M (where M is the length of
path p) consecutive matrix multiplications between the in-
puts and parameters of each layer, followed by an element-
wise multiplication with the activations.

Computational cost analysis. This analysis, detailed in Ta-
ble 2, focuses on understanding the computational complex-
ity of our method in contrast to that of our competitors. No-
tably, we include IMP in this assessment to offer a broader
context to our study. In the second column of the table,
we present the computational cost of invoking each pruning



Figure 2. Average classification accuracy at different sparsity levels on CIFAR-10 using ResNet-20, CIFAR-100 using VGG-16 and Tiny-
ImageNet using ResNet-18, respectively. Each experiment is repeated three times. We report in shaded colors the standard deviation.

Figure 3. Average classification accuracy at different sparsity levels on CIFAR-10, CIFAR-100 and Tiny-ImageNet using pre-trained
ResNet-50 as architecture. The first column reports the results of starting from the supervised ImageNet pre-training. The second column
reports the performance when starting from the MoCov2 pre-training on ImageNet. Finally, in the third column we report the results when
starting from CLIP. Each experiment is repeated three times. We report in shaded colors the standard deviation.

procedure, measured in numbers of macro-operations per-
formed to obtain the final pruning scores. Where we report
O(1) complexity, it means that the scores can be obtained
immediately by simply looking at some intrinsic property of
the network, such as the magnitude of the weights, which
does not require any additional processing. Here, T rep-
resents the required number of pruning iterations, and B
indicates the number of mini-batches processed by each al-
gorithm during this procedure. Additionally, we denote the

costs of a single forward pass with [FP ] and of a single
backward pass with [BP ]. Columns three and four illustrate
the training epochs necessary for the pruning algorithm to
attain approximately equivalent accuracy at 98.20% sparsity
when starting from ResNet-20 on CIFAR-10. This metric
trivially stands at zero for PaI methods, given that the proce-
dure is executed prior to training. However, IMP demands
a minimum of 6 iterative rounds of pruning and subsequent
re-training (each full training cycle spans 160 epochs) to



Figure 4. Average mean Intersection over Union (mIoU) at different sparsity levels on Pascal VOC2012 using DeepLabV3+ with pre-
trained ResNet-50 as the backbone. Each experiment is repeated three times. Standard deviations are in shaded colors.
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Figure 5. Active output units at different sparsities in ResNet-20, ResNet-18 and ResNet-50. For SNIP and PX data mini-batches are
sampled from CIFAR-10, Tiny-ImageNet and ImageNet, respectively.
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Figure 6. Fixed-Weight-NTK spectrum of ResNet-20 on the CIFAR-10 dataset at different sparsity ratios.

surpass the accuracy reached by our method. Within this
analysis, it becomes apparent that PX’s computational com-
plexity mirrors that of NTK-SAP [21], aligning generally
with iterative PaI methods, which are explicitly constructed
to iterate across T rounds preceding training.

Procedure clarifications and pseudocode. In Algorithm 1,
we provide the pseudocode to further clarify the role of T
and B in the implementation of PX. The functions g,h are
copies of f defined for clarity, but the memory usage does
not double as PX only stores θ and the derivatives w.r.t. θ2

are computed in a single pass (lines 13-15). PX is an itera-
tive PaI method but differs from the standard framework in
lines 3, 9-15. We remark that iteratively refining the prun-
ing mask M in T rounds while yielding positive saliency
scores guarantees to avoid layer collapse [19].

C. Additional Experiments

Segmentation experiments. In Fig. 1 we report the full re-
sults of the semantic segmentation experiments on the Pas-

cal VOC2012 [6] dataset. In each experiment the architec-
ture used is DeepLabV3+ [2] on a ResNet-50 [11] back-
bone, starting from ImageNet [5], MoCov2 on ImageNet [4]
and DINO [1] pre-trained models.

The general trend reported in the main paper is con-
firmed also in this setting, where our method is able to retain
the accuracy of the dense baseline at trivial sparsities.

SynFlow-L2 ablation study. As mentioned in the main
paper, our method can be interpreted as an extension of
SynFlow-L2 [9]. The core difference is that PX reweights
the network’s outputs on the basis of the information pro-
vided by the data: that information indicates how much
each weight contributes to the upper bound on the trace of
the NTK reported in Eq. (6) of the main submission. Thus,
by comparing PX with SynFlow-L2 we conduct an ablation
study to provide further evidence regarding the soundness
of the hypotheses underpinning our algorithm, proving the
importance of the data-dependent component. In Fig. 2,
3 and 4 we observe that our method is always able to im-
prove over SynFlow-L2. Furthermore, the latter exhibits a



Data: Network f parametrized by θ, pruning dataset D made of B
mini-batches, number of pruning rounds T , final sparsity level k

Result: Parameter mask M used to sparsify f before training

1 # .detach(): the operation is detached from the computational graph.
2 # z is the output of a network, a is the vector of activations.

3 g,h = f # create two copies of f
4 M = 1 # init. parameter mask to all 1s
5 for t in 1, 2, ..., T do
6 # perform the t-th pruning round
7 p = k(t/T ) # compute the % of weights to remove at round t
8 s = 0 # init. saliency scores to all 0s
9 for i in 1, 2, ..., B do

10 x = Di # mini-batch of data at index i
11 , a = f(x, θ ⊙ M , ).detach() # record activations a
12 zg , = g(x2,1⊙ M ,a).detach() # force activations to a

13 zh, = h(1, θ2 ⊙ M ,1) # forward an input of all 1s
14 R = (zg ⊙ zh).sum() # compute score function
15 s += R.backward() ⊙ θ2 # update param.-wise saliency scores

16 # update M to keep only top-p parameters
17 s̃ = sort descending(s) # sorted saliency scores in descending order
18 p = length(θ) · p # compute top-p threshold index
19 for j in 1, 2, ..., length(θ) do
20 if sj − s̃p < 0 then
21 Mj = 0 # set the mask of the j-th param. to zero

22 returnM

Algorithm 1: Pruning via Path eXclusion (PX)

drastic decrease in performance when the cardinality of the
network’s output increases. As already noticed in [15], this
is attributed to the combined effect of reducing the layer
width while keeping a high path count in the architecture.

Layer widths. In Fig. 5, we present additional plots on the
layer width to confirm the trend reported in the main sub-
mission regarding the number of output units preserved by
PX at each layer. We observe again that PX is able to pre-
serve the output width despite the very high sparsity ratios
under exam and the different model sizes.

Spectral analyses. Fig. 6 provides further evidence regard-
ing the preservation of the full eigenspectrum thanks to the
approximation of our upper bound detailed in Eq. (6) of the
main submission.

Data amount analysis. We indicate with |D| the number of
examples per class. The relationship between |D| and the
number of batches B is given by B = ⌈|D|×|C|/b⌉, where
|C| is the number of classes, and b is the batch size. In Ta-
ble 3, we extend Table 2 by showing the effect of chang-
ing B and |D| on the data dependent methods. PX is less
sensitive than the competitors, and increasing |D| does not
yield a significant performance gain in line with the findings
of [13].
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