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1. Algorithmic Description

Algorithm 1 in the main paper covers the details of the one-
shot LRWOpt scheme. It requires a set of initialized Split-
ter parameters ϕ, Meta-Network parameters Θ and classifier
parameters Θ and finally outputs a set of optimal classifier
parameters θ∗. Also, the splitting of the total dataset (D)
into train (Str) and validation set Sval is done using the
Splitter parameterized as a neural network fΘ (Θ being the
parameters) and 0 < fΘ(x, y) < 1 for any instance (x,y).
The examples with fΘ(x, y) > 0.5 are put into validation
set. FΘ denotes the application of this splitting function
onto the overall dataset outputting train and validation sub-
sets, i.e. FΘ(D) = {xi, yi : (xi, yi) ∈ D; fΘ(xi, yi) ≥
0.5}, {xi, yi : (xi, yi) ∈ D; fΘ(xi, yi) < 0.5}. Here, in-
stead of applying the nested loops for the bi-level setup at
the epoch level, we have done it at the batch level. Both of
them yield nearly similar results.

2. Proof of Theorem 1

Theorem 1 (Asymptotics). Consider the tri-level optimiza-
tion in Equation (2). Suppose the weighting function ϕ(·),
and splitting function Θ(·) are dependent on both x and y.
Let’s suppose N + M → ∞, and limN,M→∞

M
N+M = δ.

Moreover, suppose the domains of ϕ, θ,Θ are very large
and contain the set of all measurable functions. Then the
objective of MOLERE is equivalent to

max
S′:|S′|=δ(N+M)

min
θ

∑
(x,y)∈S′

ℓ(y, fθ(x)). (1)

intuitively, the model picks points close to boundary into
validation set.

Proof. Let S′ and S\S′ be any partitioning of the dataset S.
Let Qval, Qtr be the probability distributions corresponding
to S′, and S \ S′. The proof proceeds by showing that the
following two optimization problems are equivalent

min
θ

E(x,y)∼Qval [ℓ(y, fθ(x))]. (2)

min
ϕ

E(x,y)∼Qval [ℓ(y, fθ∗(ϕ)(x))]

s.t.θ∗(ϕ) = argmin
θ

E(x,y)∼Qtr [ϕ(x, y)ℓ(y, fθ(x))].

(3)
Observe that the above two optimization problems are the
inner optimization problems of objectives (2) (from main
paper) and (1). Showing that these two are equivalent would
then immediately imply that objective (2) (from main paper)
is equivalent to objective (1).

First let’s consider the case where supp(Qtr) =

supp(Qval). By choosing ϕ(x, y) = Qval(x,y)
Qtr(x,y) , the constraint

in Equation (3) can be rewritten as

θ∗(ϕ) = argmin
θ

E(x,y)∼Qval [ℓ(y, fθ(x))].

Observe that this is the same as the optimization problem in
Equation (2). This shows that both the optimization prob-
lems in Equation (2), (3) are equivalent.

Next, consider the case where supp(Qtr) ̸= supp(Qval).
This is the easy case to handle. To see this, consider the
extreme case where supp(Qtr) ∩ supp(Qval) = {}. Since
the domain of θ contains the set of all measurable func-
tions, we can set ϕ(x, y) = 1 and choose θ∗(ϕ) to be the
Bayes optimal classifier1 on both supp(Qtr), supp(Qval). It
is easy to verify that this is an optimizer of Equation (3).
This shows that Equation (2), (3) are equivalent. A simi-
lar argument can be used to handle the more general case
of supp(Qtr) ̸= supp(Qval). Here, we choose a ϕ that per-
forms probability matching on the intersection of the two
supports, and set ϕ(x, y) = 1 on the rest of the support.

3. Deriving the Update Equations
Let us now discuss the update equation for each of the neu-
ral networks namely the Splitter Network (Θ), the Meta-
Network (ϕ) and the target Prediction Network (θ). As dis-
cussed in the paper and in the algorithmic description pro-
vided above, we have formulated the problem as a bi-level

1A Bayes optimal classifier is a classifier that minimizes the expected
population risk
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optimization task with Θ, ϕ being optimized at the outer
level and θ at the inner level. Therefore, for every update in
Θ, ϕ, we update θ for K steps as an approximation for most
optimal θ for the current value of Θ and ϕ, i.e. θ∗(ϕ,Θ).
Splitter Network (Θ). Updated at the outer loop level using
the validation set to minimize the loss to identify whether a
given input label pair would be predicted correctly and to
maximize the loss on the validation set when using the cur-
rent classifier parameters, for maximum generalization er-
ror. After e epochs of the complete bi-level setup, its update
equation can be written as:

Θe+1 = Θe −
β1

M

M∑
i=1

∇(CE(Psplitter(z
v
i |xv

i , y
v
i ), Iyv

i
(ŷvi ))

− lval(y
v
i , fθ∗(Θ,ϕ)(x

v
i ))

(4)
As discussed in the paper, along side this loss, the regu-
larizers proposed in [3] are also used to update the splitter.
Meta-Network (ϕ). This is always updated alongside the
splitter objective where the loss term corresponds to mini-
mizing the error on validation set. Thus, after e epochs, it
can be written as:

ϕe = ϕe − β2∇ϕ

M∑
i=1

(lval(y
v
i , fθ∗(Θ,ϕ)(x

v
i ))

−CE(Psplitter(z
v
i |xv

i , y
v
i ), Iyv

i
(ŷvi )))

(5)

The overall setup is based on Meta-Network being inde-
pendent of the Splitter and only aimed at making classifier
generalize well on the validation set and thus, the second
term inside the gradient can be asssumed independent of ϕ
leading to:

ϕe = ϕe − β2

M∑
i=1

∂

∂ϕ
lval(y

v
i , fθ∗(Θ,ϕ)(x

v
i )) (6)

Classifier Network (θ). Given the algorithm, after e epochs
of the complete bi-level setup, it would have led to Ke

′

epochs over the training data, of the classifier where e
′

cor-
responds to number of epochs on train data while one epoch
on val data is completed and K is the number of times inner
loop is run for every outer loop. We have e

′
= batch t

batch v e.
The classifier has to be just updated through the weighted
training loss on the split Dt:

θKe′+1 = θKe′ − β3

N∑
j=1

∇θgϕ(xi)l(fθ(xi), yi) (7)

Following the recent reweighting works[12, 21], we also
approximate it as:

θKe′+1 = θKe′ − β3

N∑
j=1

gϕ(xi)∇θl(fθ(xi), yi) (8)

The Classifier and Meta-Network update equations (eqs.
8 and 6) are same as the existing instance based re-
weighting works [11, 12] having a validation set bi-level set
which they approximate as a single level optimization set.
This involves creating a copy of the classifier (θ̂) and us-
ing that to update the meta-network (ϕ). Thus, ϕ For more
details and derivations for the update equations of classi-
fier and Meta-Network, following works [11, 12] can be re-
ferred.
Early Stage Performance and Convergence: Initially, the
splitter network is likely to randomly assign data to train-
ing and validation, and the scorer network will assign ran-
dom weights – in expectation, we believe this will fall back
to the baseline ERM performance during initial training
epochs. Empirically, examining learning curves of LR-
WOpt vs ERM, we see similarity in early epochs followed
by gradual divergence. Also, previous work provides con-
vergence guarantees for bi-level [21, 25] and min-max [6]
objectives using alternating updates for learning.

4. Experimental Details

4.1. Training and Evaluation

Architectures. We have used following architectures
for classifer: WRN28-10 for CIFAR-100, VGG-16
for ImageNet-100, ResNet-152 for Oxford-IIIT dataset,
ResNet-32 for the aircraft and stanford cars datasets, and
ResNet-50 for the rest. We add dropout regularization, fol-
lowing [12], to the classifier. We used a pretrained backbone
as the base of the meta network having the same architecture
as the classifier, to which we attach a fully connected layer
for predicting the instance weights. For Splitter we follow
the architecture from the learning-to-split[10] paper again
the classifier backbone in a read-only manner followed by a
learnable MLP layer to predict the splitting decision.
Training. For training the classifier, we use a batch size of
64 and image size of 224 × 224 for all experiments except
CIFAR-100 where it is 32 × 32. We use an initial learning
rate of 0.1 for the classifier, followed by a factor 10 decay
every 50 epochs. For the meta network and splitter, we fix
the learning rate at 1e − 3. We use a momentum value of
0.9 for all three. We run each experiment for 100 epochs
of training, for which we observed convergence in all our
experiments. We warm-start the main classifier by training
for 25 epochs on a random split, followed by updating the
meta-network and splitter for every 5 updates to the classi-
fier (Q=5). We used a dropout rate of 0.25 for the classifier
network, with 5 evaluations for estimating variance. The
split of training/validation data, for different datasets, into
the train and meta train sets is provided below along with
dataset descriptions. We keep the length of training set same
for all the methods and the baselines and do hyperparame-
ter tuning on the validation set for the methods not using it



in their optimization. We fix delta to be 0.1, resulting in a
validation set of at most 10% of the training set; based on
our splitting criterion, this target is always reached. In our
current method, even if delta is set higher, only those ex-
amples will be included for which Θ(x, y) < 0.5, thereby
enforcing a hardness constraint. Also, both from experi-
ments and DRO literature, we discovered increasing delta
decreases variance but increases bias.
Regularizer details. We used the following two regulariz-
ers [3]:

Ω1 = DKL(P(z|B(δ))),Ω2 =
∑

k∈{0,1}

DKL(P(y|z = k))

where P(z) denotes the percentage of examples in train or
val set and B(δ) is Bernoulli(δ). The first regularizer guides
the splitter to maintain train/validation ratio close to δ and
the second aims to balance labels across splits. We included
them based on prior work; however, their contribution was
modest – roughly 0.23% accuracy across datasets, with the
second regularizer contributing most of it (∼ 0.2%).

4.2. Datasets

As discussed in the paper, we have used popular classifi-
cation benchmarks CIFAR-100, ImageNet-100, ImageNet-
1K, Aircraft, Stanford Cars, Oxford-IIIT Fine-grained
classification (Cats v/s Dogs) and Clothing-1M. Alongside
these we have used ImageNet-A, ImageNet-R, Camelyon,
iWildCam and Diabetric Retiopathy dataset with a country
shift setup for OOD analysis using ImageNet-1K trained
models.
ImageNet-1K [7] consisting of 1.3M images across 1000
classes, is the largest of the datasets in our experiments. We
have used tha training set as the overall dataset (train+val)
for applying our setup and training baselines.
ImageNet-100 [23]. A subset of ImageNet-1K with 100
classes, 130k training instances and 5k examples for testing
as a validation set. We use 13k examples from the train set
as our validation set, and the rest for training.
Clothing-1M [26]. Around 1M images from 14 apparel
classes; since images and labels are programmatically
extracted from the web, there is significant label noise.
Around 72k manually refined examples form a clean
subset, of which 10k examples comprise the test set and the
remaining 11k are marked as validation.
CIFAR-100 [14]. This dataset consists of 60k images of
size 32 × 32 spread across 100 categories. We use 50k im-
ages for training and 10k for testing. For the meta-network,
we use 5k examples from the train set as validation data,
and the remaining 45k examples for training the classifier.
Inst. C-10[24]. The setup here is same as the CIFAR-100
dataset with 30% noise. Stanford Cars [13]. This dataset
contains around 16k images from 102 categories of cars
based on Model, company, etc. with a roughly equal split

between train and test set. We use 1K images (around 10
images per class), from the train set use as our validation
set.
Aircraft [17]. It consists of 10.2k images belonging to
different types of aircrafts covering 102 categories. The
task involves fine-grained image classification into these
102 classes. The train, validation and test sets are equal
splits of data. We combine the train and validation data for
applying our scheme and limit the length of our validation
set to be the length of original validation set.
Oxford-IIIT pet dataset [19]. It consists of 37 categories
representing breeds of dogs and cats, with 200 images per
category equally divided into train and test sets. We test
our method on the fine-grained image classification task for
this dataset. For the validation set, we use 600 examples
from the train set.
ImageNet-A[9]. It comprises of real-world naturally
existing (unmodified) examples which have been mostly
misclassified by ResNet models. It has been proposed as a
test set, comprising 7500 images belonging to 200 classes
of the ImageNet-1K dataset.
ImageNet-R[8]. It comprises Images styled to various
artistic renditions like paintings, drawings, etc. belonging
to subset of classes of the ImageNet-1K dataset. It was ba-
sically designed to test generalization onto such renditions
as the ImageNet dataset is restricted to photos. It consists
of 30k images belonging to 200 classes.
Camelyon Dataset [2]. It consists from training data from
various sources treated as different domains and a test
dataset from completely different sources or domains. It
involves the task of classification of breast cancer patients
into various stages.
iWildCam Dataset [4]. It is again a classification task
with the train dataset consisting of 441 different locations
and a total of 217k images and the test dataset consist of
a disjoint set of 111 different locations and a total of 63k
images, spread throughout the globe. The aim is to identify
the animal species from the given image.
Diabetic Retinopathy [1]. It involves the classification of a
given retina scans into various levels of diabetic retinopathy
(total 5 levels). For this work, we have binarized the task
to 2 categories : (0,1) and(2,3,4). We train the model on
the Kaggle dataset extracted from hospitals in the US. For
OOD testing, we use the APTOS dataset [22], extracted
from a different country’s hospital, resulting in a significant
domain shift presumably due to equipment and protocol
differences. The test set consists of around 3k images and
val set around 3k images.

4.3. Baselines

ERM. This is the standard empirical risk minimization clas-
sifier, obtained by training a classifier with cross-entropy



DATA SET EASY HARD RANDOM OPT ERM MBW RHO-LOSS FSR MWN MAPLE BILAW

CIFAR-100 79.13 81.17 80.02 81.42 79.45 79.22 79.63 80.10 79.13 80.12 79.87
AIRCRAFT 80.87 81.28 80.69 81.78 80.22 80.12 80.34 80.55 80.11 80.58 80.37
STANFORD CARS 80.22 82.23 81.35 82.47 80.32 80.67 80.48 80.55 80.11 81.40 81.07
IMAGENET-100 86.82 87.95 87.62 87.67 86.91 86.34 86.96 87.18 86.78 87.67 87.25
IMAGENET-1K 74.17 76.26 74.88 76.61 75.65 75.23 75.13 75.76 75.12 75.35 75.60
OXFORD-IIIT 91.15 92.72 92.38 93.09 92.33 92.18 92.35 92.51 92.04 92.17 92.38
DR (IN-DIST) 89.86 91.78 91.00 91.89 90.65 90.80 90.74 90.91 90.72 91.06 91.12

Table 1. Comparison of accuracies of LRW-Hard/Easy/Random and the existing baseline-reweighting/data selecting methods along with
the standard ERM classifier, on various datasets discussed in the paper.

DATA SET HARD EASY RANDOM OPT MAPLE STABLENET RHO-LOSS FSR MWN MBR ERM

CAMELYON 71.06 70.13 70.22 71.43 70.35 70.31 71.12 70.34 70.06 70.46 70.22
IWILDCAM 72.56 72.12 71.46 72.68 71.59 71.52 71.13 71.45 71.02 71.40 71.32
IMAGENET-A 5.6 4.9 5.2 5.5 5.4 5.4 5.4 5.5 5.2 5.2 5.3
DR (OOD) 86.9 85.8 86.1 86.8 86.2 86.3 86.2 86.2 85.9 85.9 86.1

Table 2. Comparison of accuracies of LRW-Hard/Easy/Random and the existing baseline-reweighting/data selecting methods along with
the standard ERM classifier, on various Out-of-Distribution benchmarks discussed in the paper.

Figure 1. Top. Histograms of difference in margin of the LRW-Hard trained classifier and ERM classifier. Bottom. Mean and Standard
deviation of margin deltas between the LRW Hard/Easy methods and the ERM classifier on the test examples, binned by ERM classifier
margins with a bin width of 0.2 units. On the x-axis is the starting of the margin interval bin of the ERM classifier. We see that LRW-Hard
classifiers have a tendency to increase margin over and above the ERM margin, whereas LRW-easy classifiers appear to reduce margin.

loss in a conventional batch-learning manner, and valida-
tion data used for hyperparameter tuning. Its margins are

then used for selecting the validation set for our method.
Margin-based re-weighting. Liu et al. [16] suggest the



use of probabilistic margin as an ad-hoc scaling term for
adversarial samples, in an adversarial training regime. We
extended this method to simply reweight all data points ac-
cording to ERM margin, and training a second classifier
from scratch. This is a control baseline to contrast the con-
tributions of the LRW framework against the notion of using
margin directly in the training loss.
Meta-Weight-Net. Shu et al. [21] proposed a learned
re-weighting scheme based on bi-level optimization intro-
duced in [20] but using a 2-layer meta network to predict
instance level weights using taking loss as input.
Fast-Sample Re-weighting. Zhang and Pfister [28] pro-
posed a meta-learning scheme which generates a pseudo
validation set and then proposed an efficient and faster
sample re-weighting based meta-learning technique to re-
weight train examples.
RHO-Loss. Mindermann et al. [18] proposes selecting ex-
amples based on a Reducible Holdout Set Loss to maxi-
mize generalization–this results in an implicit reweighting
of training instances. We use our validation set as its hold-
out set for all the datasets.
MAPLE. Proposed in [29] Similar to [20, 28] based on
free-parameters based reweighting setup but advocates for
certain ”OOD risk” objectives for improving generaliza-
tion/robustness of the classifier.
BiLAW. Another bi-level optimization based learned re-
weighting similar to Meta-weight-Net, proposed by Holtz
et al. [10], which feeds multi-class margin to the meta-
network, resulting in a more robust (both in-dist and ad-
versarially) classifier.
StableNet. Proposed by Zhang et al. [27] and optimizes
sample weights such that the dependence among various
features is decreased.
GDW. A recently proposed [5] re-weighting method de-
signed for handling skewed or noisy label scenarios.

5. Time Complexity, Compute, Tuning:
Training time: Averaging over datasets in Figure 1 (from
main paper), runtime as a function of ERM cost is (LR-
WOpt, LRW-hard, MWN, L2R) := (1.6x, 2.4x, 1.4x, 1.4x).
LRWOpt is marginally more expensive than MWN for no-
ticeably higher accuracy, and substantially lower than the
train-twice heuristic (LRW-hard) while meeting or exceed-
ing its accuracy.
FLOPS: (LRWOpt, LRW-hard) are ∼ (1.7x, 2.3x) ERM.
Hyperparams: Compared to LRW, we have one additional
tunable hyperparameter for splitter’s learning rate. LRW it-
self requires a meta-network learning rate and Q. Sensitiv-
ity analysis suggests any moderate value of Q is sufficient;
we set Q = 5 across datasets. The parameter δ is fixed at
0.1; we believe this is a reasonable general tradeoff between
training & validation sizes. We also found that ERM hyper-
parameters are sufficient for LRW; the meta-network and

splitter learning rates can be tied to classifier learning rates
without much degradation.

6. Comparison with only hard examples in val-
idation set

We further analyze three new variants which involve us-
ing only hard examples in the validation set: First we in-
corporate the loss highlighted in [15] for the validation set
along with our LRW-Hard method. Second, in our LRWOpt
method we decrease the threshold Θ for train set to 0.2,
such that only the hardest of the examples are there in the
validation set and third where in the LRW-hard, we limit
the validation set to only negative margin (i.e., incorrectly
classified) examples from ERM. Table 3 shows accuracy %
gains of LRWOpt over these variants on 4 randomly picked
datasets including 1 OOD challenge.

IN-100 DR CIFAR-100 iWildCam

Variant 1 0.8 0.6 1.1 0.8
Variant 2 0.7 0.9 1.3 0.6
Variant 3 0.7 0.7 1.5 0.9

Table 3. Accuracy gain % of LRWOpt over variants.

7. Accuracy Comparison
We present the raw accuracy values of all methods re-
ported in the paper. Table 1 shows the results for this
comparison corresponding to Figure 1 and Table 2 cor-
responding to Figure 2 in the main paper. This under-
scores shows the effectiveness of our method as it shows
gains even at high accuracy values like for the Oxford-IIIT
pets dataset. Furthermore, it is also effective on relatively
difficult datasets where model suffer in performance like
Imagenet-1K dataset.

8. Analysis of Predicted Margins
We show the histograms of difference in margins predicted
by LRW-Hard and ERM classifier on the remaining datasets
including Aircraft, Stanford Cars and ImageNet-100. Fig-
ure 1 shows the results. Here also, a pattern similar to the
main draft is observed, i.e., more examples are on the pos-
itive side, thus showing that LRW-Hard is able to optimize
margins. This is supported by both mean and median being
on the positive side.
We also show experiment involving grouping the points
based on ERM margin values and reporting the mean and
std of the margin difference between LRW Hard/Easy and
ERM classifier, for the remaining datasets including Air-
craft, ImageNet-100 and ImageNet-1K, in Figure 1. The
results are similar as in the main paper for the CIFAR-100
and Clothing datasets. Here also, for LRW-Hard, the mean



is positive and significant, especially for positive margin ex-
amples showing the effectiveness of LRW Hard compared
with ERM. Furthermore, the difference between LRW Hard
and LRW Easy plots is significant, further backing the claim
regarding importance of validation set and its effectiveness
in margin maximization.
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