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1. Experiments

1.1. Evaluations on ScanNet and ScanNet200 Hid-
den Test Sets

We submit ODIN to official test benchmarks of ScanNet
[5] and ScanNet200 [18]. Following prior works, we train
ODIN on a combination of train and validation scenes. Un-
like some approaches that employ additional tricks like DB-
SCAN [20], ensembling models [13], additional special-
ized augmentations [24], additional pre-training on other
datasets [25], finer grid sizes [23] and multiple forward
passes through points belonging to the same voxel, our
method avoid any such bells and whistles.

The results are shown in Tab. 1. All conclusions from
results on the validation set of these datasets as discussed in
the main paper are applicable here. On the ScanNet bench-
mark, ODIN achieves close to SOTA performance on se-
mantic segmentation and mAP25 metric of Instance Seg-
mentation while being significantly worse on mAP metric
due to misalignments between sensor and mesh sampled
point clouds. On ScanNet200 benchmark, ODIN sets a
new SOTA on semantic segmentation and mAP50/mAP25
metric of Instance Segmentation, while achieving close to
SOTA performance on mAP metric. Notably ODIN is the
first method that operates over sensor RGB-D data for in-
stance segmentation and achieves competitive performance
to models operating over mesh-sampled point clouds.

1.2. Evaluation on S3DIS and Matterport3D

We also benchmark ODIN on Matterport3D [2] and S3DIS
[1] datasets.

Matterport: Matterport3D comprises 90 building-scale
scenes, further divided into individual rooms, with 1554
training rooms and 234 validation rooms. The dataset pro-
vides a mapping from each room to the camera IDs that cap-
tured images for that room. After discarding 158 training
rooms and 18 validation rooms without a valid camera map-

ping, we are left with 1396 training rooms and 158 valida-
tion rooms. For instance segmentation results, we train the
state-of-the-art Mask3D [20] model on the same data (re-
duced set after discarding invalid rooms). For semantic seg-
mentation, we conduct training and testing on the reduced
set, while baseline numbers are taken from the OpenScene
[16] paper, trained and tested on the original data. Given the
small size of the discarded data, we do not anticipate sig-
nificant performance differences. The official benchmark
of Matterport3D tests on 21 classes; however, OpenScene
also evaluates on 160 classes to compare with state-of-the-
art models on long-tail distributions. We follow them and
report results in both settings.

S3DIS: S3DIS comprises 6 building-scale scenes, typ-
ically divided into 5 for training and 1 for testing. The
dataset provides raw RGB-D images, captured panorama
images, and images rendered from the mesh obtained af-
ter reconstructing the original sensor data. Unlike Matter-
port3D, S3DIS do not provide undistorted raw images; thus,
we use the provided rendered RGB-D images. Some rooms
in S3DIS have major misalignments between RGB-D im-
ages and point clouds, which we partially address by incor-
porating fixes from DeepViewAgg [17] and introducing our
own adjustments. Despite these fixes, certain scenes still ex-
hibit significantly low overlap between RGB-D images and
the provided mesh-sampled point cloud. To mitigate this,
we query images from other rooms and verify their over-
lap with the provided point cloud for a room. This partially
helps in addressing the low overlap issue.

The official S3DIS benchmark evaluates 13 classes. Due
to the dataset’s small size, some models pre-train on addi-
tional datasets like ScanNet, as seen in SoftGroup [22], and
on Structured3D datasets [27], consisting of 21,835 rooms,
as done by Swin3D-L [25]. Similar to Mask3D [20], we
report results in both settings of training from scratch and
starting from weights trained on ScanNet.

Like ScanNet and ScanNet200, both S3DIS and Matter-
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Table 1. Evaluation on Test Set of Established 3D Benchmarks.

(a) Comparison on ScanNet for Instance Segmentation Task.

Input Model mAP mAP50 mAP25

Sensor RGBD
Point Cloud

ODIN-Swin-B (Ours) 47.7 71.2 86.2

Mesh Sampled
Point Cloud

SoftGroup [22] 50.4 76.1 86.5
PBNet [26] 57.3 74.7 82.5
Mask3D [20] 56.6 78.0 87.0
QueryFormer [15] 58.3 78.7 87.4
MAFT [14] 59.6 78.6 86.0

(b) Comparison on ScanNet for Semantic Segmentation Task.

Input Model mIoU

Sensor RGBD
Point Cloud

MVPNet [9] 64.1
BPNet [7] 74.9
DeepViewAgg [17] -
ODIN-Swin-B (Ours) 74.4

Rendered RGBD
Point Cloud

VMVF [12] 74.6

Mesh Sampled
Point Cloud

Point Transformer v2 [24] 75.2
Stratified Transformer [13] 74.7
OctFormer [23] 76.6
Swin3D-L [25] 77.9

Zero-Shot OpenScene [16] -

(c) Comparison on ScanNet200 for Instance Segmentation Task.

Model mAP mAP50 mAP25

Sensor RGBD
Point Cloud

ODIN-Swin-B (Ours) 27.2 39.4 47.5

Mesh Sampled
Point Cloud

Mask3D [20] 27.8 38.8 44.5
QueryFormer [15] - - -
MAFT [14] - - -

Zero-Shot OpenMask3D [21] - - -

(d) Comparison on ScanNet200 for Semantic Segmentation Task.

Input Model mIoU

Sensor RGBD
Point Cloud

ODIN-Swin-B (Ours) 36.8

Mesh Sampled
Point Cloud

LGround [18] 27.2
CeCo [28] 34.0
Octformer [23] 32.6

port3D undergo post-processing of collected RGB-D data
to construct a mesh, from which a point cloud is sampled
and labeled. Hence, we train both Mask3D [20] and our
model using RGB-D sensor point cloud data and evaluate
on the benchmark-provided point cloud. Additionally, we
explore model variants by training and testing them on the
mesh-sampled point cloud for comparative analysis.

The results are shown in Tab. 2. We draw the following
conclusions:
ODIN outperforms SOTA 3D models on Matterport3D
Instance Segmentation Benchmark across all settings
(Tab. 2a)
ODIN sets a new state-of-the-art on Matterport3D Seman-
tic Segmentation Benchmark (Tab. 2b): Our model achieves
superior performance in both the 21 and 160 class settings.
It also largely outperforms OpenScene [16] on both settings.
OpenScene is a zero-shot method while ODIN is supervised
in-domain, making this comparison unfair. However, Open-
Scene notes that their zero-shot model outperforms fully-
supervised models in 160 class setup as their model is robust
to rare classes while the supervised models can severely suf-
fer in segmenting long-tail. ConceptFusion [10], another
open-vocabulary 3D segmentation model, also draws a sim-
ilar conclusion. With this result, we point to a possibility of
supervising in 3D while also being robust to long-tail by

simply utilizing the strong 2D pre-trained weight initializa-
tion.

On S3DIS Instance Segmentation Benchmark (Tab. 2c),
in the setup where baseline Mask3D start from ScanNet
pre-trained checkpoint, our model outperforms them in the
RGBD point cloud setup but obtains lower performance
compared to mesh sampled point cloud methods and when
compared on the setup where all models train from scratch.

On S3DIS Semantic Segmentation Benchmark (Tab. 2d,
ODIN trained with ScanNet weight initialization outper-
forms all RGBD point cloud based methods, while achiev-
ing competitive performance on mesh sampled point cloud.
When trained from scratch, it is much worse than other
baselines. Given the limited dataset size of S3DIS with only
200 training scenes, we observe severe overfitting.

1.3. ScanNet200 Detailed Results

ScanNet200 [18] categorizes its 200 object classes into
three groups—Head, Common, and Tail—each compris-
ing 66, 68, and 66 categories, respectively. In Tab. 3,
we provide a detailed breakdown of the ScanNet200 re-
sults across these splits. We observe that in comparison
to SOTA Mask3D model trained on mesh-sampled point
cloud, ODIN achieves lower performance on Head classes,
while significantly better performance on Common and Tail



Table 2. Evaluation on Matterport3D [2] and S3DIS [1] datasets.

(a) Comparison on Matterport3D for Instance Segmentation Task.

21 160

Input Model mAP mAP25 mAP mAP25

Sensor RGBD
Point Cloud

Mask3D [20] 7.2 16.8 2.5 10.9
ODIN-ResNet50 (Ours) 22.5 56.4 11.5 27.6
ODIN-Swin-B (Ours) 24.7 63.8 14.5 36.8

Mesh Sampled
Point Cloud

Mask3D [20] 22.9 55.9 11.3 23.9

(b) Comparison on Matterport3D for Semantic Segmentation Task.

21 160

Input Model mIoU mAcc mIoU mAcc

Sensor RGBD
Point Cloud

ODIN-ResNet50 (Ours) 54.5 65.8 22.4 28.5
ODIN-Swin-B (Ours) 57.3 69.4 28.6 38.2

Mesh Sampled
Point Cloud

TextureNet [8] - 63.0 - -
DCM-Net [19] - 67.2 - -
MinkowskiNet [4] 54.2 64.6 - 18.4

Zero-Shot OpenScene [16] 42.6 59.2 - 23.1

(c) Comparison on S3DIS Area5 for Instance Segmentation Task. († =
uses additional data)

Model mAP mAP50 mAP25

RGBD Point
Cloud

Mask3D [20] 40.7 54.6 64.2
Mask3D [20] † 41.3 55.9 66.1
ODIN-ResNet50 (Ours) 36.3 48.0 61.2
ODIN-ResNet50 † (Ours) 44.7 57.7 67.5
ODIN-Swin-B † (Ours) 43.0 56.4 70.0

Mesh Sampled
Point Cloud

SoftGroup [22] † 51.6 66.1 -
Mask3D [20] 56.6 68.4 75.2
Mask3D [20] † 57.8 71.9 77.2
QueryFormer [15] 57.7 69.9 -
MAFT [14] - 69.1 75.7

(d) Comparison on S3DIS for Semantic Segmentation Task. (†

= uses additional data)

Input Model mIoU

RGBD Point
Cloud

MVPNet [9] 62.4
VMVF [12] 65.4
DeepViewAgg [17] 67.2
ODIN-ResNet50 (Ours) 59.7
ODIN-ResNet50 † (Ours) 66.8
ODIN-Swin-B † (Ours) 68.6

Mesh Sampled
Point Cloud

Point Transformer v2 [24] 71.6
Stratified Transformer [13] 72.0
Swin3D-L [25] † 74.5

Table 3. Detailed ScanNet200 results for Instance Segmentation (§ = trained by us using official codebase)

Input Model All Head Common Tail

mAP mAP50 mAP25 mAP mAP50 mAP25 mAP mAP50 mAP25 mAP mAP50 mAP25

Sensor RGBD point cloud
Mask3D § [20] 15.5 21.4 24.3 21.9 31.4 37.1 13.0 17.2 18.9 7.9 10.3 11.5
ODIN-ResNet50 (Ours) 25.6 36.9 43.8 34.8 51.1 63.9 23.4 33.4 37.9 17.8 24.9 28.1
ODIN-Swin-B (Ours) 31.5 45.3 53.1 37.5 54.2 66.1 31.6 43.9 50.2 24.1 36.6 41.2

Mesh Sampled point cloud Mask3D [20] 27.4 37.0 42.3 40.3 55.0 62.2 22.4 30.6 35.4 18.2 23.2 27.0

classes. This highlights the contribution of effectively uti-
lizing 2D pre-trained features, particularly in detecting a
long tail of class distribution where limited 3D data is avail-
able.

1.4. Variation of Performance with Number of
Views

We examine the influence of the number of views on seg-
mentation performance using the AI2THOR dataset, specif-
ically focusing on the 2D mAP performance metric. The
evaluation is conducted by varying the number of context
images surrounding a given query RGB image. Starting
from a single-view without any context (N=0), we incre-
ment N to 5, 10, 20, 40, 60, and finally consider all images
in the scene as context. ODIN takes these N + 1 RGB-
D images as input, predicts per-pixel instance segmentation
for each image, and assesses the 2D mAP performance on
the query image. The results, depicted in Fig. 1, show a
continuous increase in 2D mAP with the growing number

of views. This observation underscores the advantage of
utilizing multiview RGB-D images over single-view RGB
images whenever feasible.

1.5. Inference Time

We assess the inference time of Mask3D and ODIN by aver-
aging the forward pass time of each model across the entire
validation set, utilizing a 40 GB VRAM A100. When fed
the mesh-sampled point cloud directly, Mask3D achieves an
inference time of 228ms. When provided with the sensor
point cloud as input, the inference time increases to 864 ms.
Mask3D with sensor point cloud is slower than with mesh
point cloud because at the same voxel size (0.02m), more
voxels are occupied in sensor point cloud ( 110k on avg.)
compared to mesh point clouds ( 64k on avg.) as mesh-
cleaning sometimes discards large portion of the scene. The
transfer of features from the sensor point cloud to the mesh
point cloud adds an extra 7 ms. ODIN-SwinB, which op-
erates over the sensor point cloud, has an inference time of
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Figure 1. 2D mAP Performance Variation with increasing
number of context views used

960ms.

2. Additional Implementation Details
The detailed components of our architecture and their de-
scriptions are presented in Fig. 2.

More implementation details are presented below:
Augmentations: For RGB image augmentation, we im-
plement the Large Scale Jittering Augmentation method
from Mask2Former [3], resizing images to a scale be-
tween 0.1 and 2.0. We adjust intrinsics accordingly post-
augmentation and apply color jittering to RGB images.
Training involves a consecutive set of N images, typically
set to 25. With a 50% probability, we randomly sample k
images from the range [1, N ] instead of using all N images.
Additionally, instead of consistently sampling N consecu-
tive images, we randomly skip k images in between, where
k ranges from 1 to 4.

For 3D augmentations, we adopt the Mask3D [20] ap-
proach, applying random 3D rotation, scaling, and jitter
noise to the unprojected XYZs. Elastic distortion and ran-
dom flipping augmentations from Mask3D are omitted due
to a slight drop in performance observed in our initial ex-
periments.
Image Resolutions We use a resolution of 256 × 256 for
ScanNet, 512 × 512 for ScanNet200, and AI2THOR. In
our AI2THOR experiments, we discovered that employing
higher image resolutions enhances the detection of smaller
objects, with no noticeable impact on the detection of larger
ScanNet-like objects. This observation was confirmed in
ScanNet, where we experimented with 512 × 512 image

resolutions and did not observe any discernible benefit.
Interpolation Throughout our model, interpolations are
employed in various instances, such as when upsampling
the feature map from 1/8th resolution to 1/4th. In cases
involving depth, we unproject feature maps to 3D and per-
form trilinear interpolation, as opposed to directly apply-
ing bilinear interpolation on the 2D feature maps. For up-
sampling/downsampling the depth maps, we use the near-
est interpolation. Trilinear interpolation proves crucial for
obtaining accurate feature maps, particularly at 2D object
boundaries like table and floor edges. This is because near-
est depth interpolation may capture depth from either the
table or the floor. Utilizing trilinear upsampling of feature
maps ensures that if the upsampled depth is derived from the
floor, it interpolates features from floor points rather than ta-
ble points.
Use of Segments: Some datasets, such as ScanNet and
ScanNet200, provide supervoxelization of the point cloud,
commonly referred to as segments. Rather than directly seg-
menting all input points, many 3D methods predict outputs
over these segments. Specifically, Mask3D [20] featurizes
the input points and then conducts mean pooling over the
features of points belonging to a segment, resulting in one
feature per segment. Following prior work, we also lever-
age segments in a similar manner. We observe that utilizing
segments is crucial for achieving good mAP performance,
while it has no discernible impact on mAP25 performance.
We suspect that this phenomenon may arise from the anno-
tation process of these datasets. Humans were tasked with
labelling segments rather than individual points, ensuring
that all points within a segment share the same label. Uti-
lizing segments with our models guarantees that the entire
segment is labelled with the same class. It’s worth noting
that in AI2THOR, our method and the baselines do not uti-
lize these segments, as they are not available.
Post-hoc output transfer vs feature transfer: ODIN
takes the sensor point cloud as input and generates seg-
mentation output on the benchmark-provided point cloud.
In this process, we featurize the sensor point cloud and
transfer these features from the sensor point cloud to the
benchmark-provided point cloud. Subsequently, we predict
segmentation outputs on this benchmark-provided feature
cloud and supervise the model with the labels provided in
the dataset. An alternative approach involves segmenting
and supervising the sensor RGB-D point cloud and later
transferring the segmentation output to the benchmark point
cloud for evaluation. We experimented with both strate-
gies and found them to yield similar results. However, as
many datasets provide segmentation outputs only on the
point cloud, transferring labels to RGB-D images for the
latter strategy requires careful consideration. This is due to
the sparser nature of the provided point cloud compared to
the RGB-D sensor point cloud, and factors such as depth
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Figure 2. Detailed ODIN Architecture Components: On the Left is the 3D RelPos Attention module which takes as input the depth,
camera parameters and feature maps from all views, lifts the features to 3D to get 3D tokens. Each 3D token serves as a query. The
K-Nearest Neighbors of each 3D token become the corresponding keys and values. The 3D tokens attend to their neighbours for L layers
and update themselves. Finally, the 3D tokens are mapped back to the 2D feature map by simply reshaping the 3D feature cloud to 2D
multi-view feature maps. On the Middle is the query refinement block where queries first attend to the text tokens, then to the visual tokens
and finally undergo self-attention. The text features are optional and are only used in the open-vocabulary decoder setup. On the Right
is the segmentation mask decoder head where the queries simply perform a dot-product with visual tokens to decode the segmentation
heatmap, which can be thresholded to obtain the segmentation mask. In the Open-Vocabulary decoding setup, the queries also perform a
dot-product with text tokens to decode a distribution over individual words. In a closed vocabulary decoding setup, queries simply pass
through an MLP to predict a distribution over classes.

noise and misalignments can contribute to low-quality label
transfer. Consequently, we opt for the former strategy in all
our experiments.
Depth Hole-Infilling: The sensor-collected depth
maps usually have holes around object boundaries and
shiny/transparent surfaces. We perform simple OpenCV
depth inpainting to fill these holes. We tried using
neural-based depth completion methods and NERF depth-
inpainting but did not observe significant benefits.
AI2THOR Data Collection: AI2THOR [11] is an embod-
ied simulator where an agent can navigate within a house,
execute actions, and capture RGB-D images of the scene.
We load the structurally generated houses from ProcTHOR
[6] into the AI2THOR simulator, and place an agent ran-
domly at a navigable point provided by the simulator. The
agent performs a single random rotation around its initial
location and captures an RGB-D frame. This process is re-
peated, with the agent spawning at another random location,
until either all navigable points are exhausted or a maxi-
mum of N = 120 frames is collected. While ProcTHOR
offers 10,000 scenes, we randomly select only 1,500 scenes
to match the size of ScanNet. Additionally, we retain scenes
with fewer than 100 objects, as our model utilizes a maxi-

mum of 100 object queries.

3. Qualitative Results
Fig. 3 shows qualitative visualizations of ODIN for various
3D and 2D datasets.
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