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1. Additional details on the setup
We first train a robust vision transformer model using some
adversarial training method and then perturb the pre-softmax
scaling factors using the same training data so that the gra-
dient masking is now prevented. Now, this model is given
to the attacker, who can craft any attack within the threat
model. The model’s weights and pre-softmax scaling factors
are fixed and cannot be changed/perturbed by the attacker.
The perturbation of pre-softmax scaling factors is thus not
adjusted as per the attacked data, but rather it is adjusted
according to the training data.

2. Related Works
Adversarial Attacks. Goodfellow [15], Szegedy et al. [27]
showed that DNNs are vulnerable to adversarial attacks.PGD
[22] maximizes the cross-entropy loss to generate an attack.
It is one of the most commonly used attacks to analyze the
robustness of a defense. Carlini and Wagner [5] showed that
maximizing max-margin loss instead of the standard cross-
entropy leads to stronger attacks. But there have been several
instances where these attacks fail to give a true estimate of
the robustness. Croce and Hein [8] proposed AutoAttack,
which is an ensemble of four attacks including three white
box (i.e., Adaptive PGD with cross-entropy loss, Adaptive
PGD with difference of logits ratio loss, Fast adaptive bound-
ary attack [7]) and one black box (square attack [2]). AutoAt-
tack is stronger than existing attacks. However, AutoAttack
is computationally expensive because it is an ensemble of
four attacks. Therefore, stronger single attacks like GAMA
attack [26] have also been proposed, which are weaker than
AutoAttack, but give a close estimate of the robustness. It
uses a ℓ2 norm regularizer between the outputs of clean and
perturbed images along with a max-margin objective in the
first few iterations of the attack. Later, only max-margin
loss is maximized and the regularizer is shown to help in
improved optimization of the attack.
Gradient Masking. Athalye et al. [3], Carlini et al. [6],
Tramer et al. [28] demonstrated that many defenses claim-
ing to achieve enhanced robustness can actually be broken

down by using adaptive attacks. Due to gradient masking,
the attacker ends up calculating a false estimate of actual
gradients, resulting in a false sense of security. Alike Logit
Scaling Attack [19], Yu and Xu [32] demonstrated that larger
scale of logits leads to floating point underflow error. In this
work, we hypothesize that the gradient masking effect due
to floating point underflow errors is more intense in VITs.
Robustness of ViT models. Paul and Chen [25] focus on
understanding the robustness comparison between the VITs
and CNNs on common corruptions (like CIFAR-10 C and
ImageNet-C) and natural adversarial image datasets (like
ImageNet-A). Through extensive experiments, the authors
conclude that VITs are more robust than CNNs. But the
authors do not consider white-box adversarial attacks, which
are known to be stronger. Our work aims to get the worst-
case robustness against the stronger white-box attacks by
overcoming the gradient masking effect.

The authors in [25] compare the adversarial robustness
between VIT and CNN models against white box and black
box attacks, but they utilize standard trained models for this
comparison and do not use stronger white box attacks like
Auto-Attack. They conclude that VITs are more robust than
CNNs. But as mentioned the introduction of the main paper,
this hypothesis has been challenged by later works [4, 24,
30].
Adversarial Training (AT). PGD-AT [22] showed that max-
imizing the cross-entropy loss helps to generate a multi-step
attack and minimising the same for training the model helps
in achieving robustness. MART [29] uses a different mini-
mization loss for the misclassified and correctly classified
examples. Trades [33] maximizes the Kullback-Leibler (KL)
loss between the outputs of clean and adversarial images
while minimizing the same with the cross-entropy loss on
clean samples. Trades [34] demonstrated the existence of the
fundamental tradeoff between clean and adversarial accuracy.
Adversarial Weight Perturbations (AWP) [31] showed that
perturbing the weights within a fixed ℓ2 norm perturbation
bound leads to convergence to a flatter minima. This helps
to enhance robustness.

Mo et al. [23] showed the importance of using pre-trained
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initializations for training VITs adversarially. The authors
demonstrated the importance of using gradient clipping for
stabilizing the adversarial training of VITs. They also claim
to randomly remove the gradient flow through some multi-
head attention modules and randomly mask the input pertur-
bation during forward propagation.Debenedetti [10] showed
that using a larger value of weight decay and a few initial
epochs of epsilon warmup can help in improved adversarial
robustness. Debenedetti [10] demonstrated that these tricks
helps in enhancing the robustness of VITs significantly. On
CIFAR100, the authors achieve significant improvement
leading to a second entry on the robustness leaderboard [9].
This is the first successful demonstration that VITs can in-
deed achieve good adversarial robustness.

In this work, we demonstrate that our Adaptive Attention
Scaling Adversarial Training (AAS-AT) can be incorporated
with any existing AT methods to achieve improved robust-
ness. Apart of adversarial attacks, we also tested our models
for semantic attacks and patch attacks.

3. Gradients of an Adversarially Robust Model
As shown by Addepalli et al. [1], Laidlaw et al. [20] the
gradients calculated from an adversarially robust model are
perceptual in nature [14]. Through a human study, Zhang
et al. [34] demonstrated that LPIPS is a good perceptual
metric. Thus, maximizing LPIPS distance while perturb-
ing the pre-softmax scaling factors should lead to finding
the scaling factors which can produce gradients that are
more perceptually aligned. As demonstrated by Ganz et al.
[14], perceptually aligned gradients imply adversarial robust-
ness. Therefore, by making the gradients more perceptually
aligned by maximizing the LPIPS distance between the orig-
inal and perturbed models, we tend to overcome gradient
masking and enhance the adversarial robustness of the model.
In order to make this claim stronger, as shown in OAAT [1],
we analyze if calculating LPIPS distance using a robust
model can indeed differentiate between the perturbations
generated from standard verses adversarially robust models.

We train a robust vision transformer model using some
adversarial training method and then perturb the pre-softmax
scaling factors using the same training data. Now, this model
is given to the attacker, who can craft any attack within the
threat model. The model’s weights and pre-softmax scaling
factors are fixed and cannot be changed/perturbed by the
attacker. The perturbation of pre-softmax scaling factors is
thus not adjusted as per the attacked image.

3.1. Performance of AAS for different perturbation
bounds

As shown in Algorithm-1 of main paper, AAS attack max-
imizes LPIPS distance using clean images rather than ad-
versarial images. Thus, there is no relationship between
the scaling factor’s perturbation and input image’s pertur-

bation. Therefore, the generated perturbations of scaling
factor are expected to generalize for different perturbation
values of input images. As shown in Table 1, incorporating
AAS attack with PGD-100 and GAMA-PGD indeed gives
improved performance over these attacks for different pertur-
bation radii. Further, the boost in the attack strength obtained
by incorporating AAS attack increases with an increase in
perturbation radius. This is because the gradient masking
effect is expected to increase with an increase in perturbation
radius. On CIFAR10, the gains by incorporating AAS attack
with ϵ=16 is over 7.55%, while 3.09% with ϵ=8. For GAMA
attack, we observe improved attack strength of 5.08% for ϵ
=16, while 2.17% for ϵ =8. Similar observations are seen on
CIFAR-100.

4. Why to choose LPIPS?
• Motivation of using LPIPS distance. In this section,
we describe the motivation for using the LPIPS distance to
perturb the pre-softmax scaling factors. It is well known that
perturbations from a robust model are perceptually aligned,
whereas from a standard model or model suffering from
gradient masking are not perceptually aligned. Further, Ganz
et al. [14] has recently demonstrated that a model giving
perceptual aligned gradients is in fact robust. Therefore, if
we can ensure that gradients become perceptually aligned
after perturbing the pre-softmax scaling factors (motivated
by [14]), the model can achieve improved robustness by
overcoming gradient masking.
• Our Observations. To demonstrate this, we further present
the comparison between CIFAR-10 perturbed images gener-
ated with a perturbation radius of 12/255 using 0,2,4,6,8,10
steps of AAS attack (Algorithm-1 of main paper) followed
by 100 steps PGD attack in Figure 1 and Figure 2. As can
be seen, the gradients generated without using AAS attack
are more noisy and less perceptually aligned. Also, it is
seen that maximizing LPIPS distance (Figure 1) generates
more perceptually aligned gradients as compared to maxi-
mizing the cross-entropy loss (Figure 2). This observation
is also supported by [20, 34], which shows that LPIPS is
a good perceptual metric (this means two images having a
lower LPIPS distance would be perceptually similar) using a
human evaluation.

5. Details of the proposed Adaptive Attention
Scaling (AAS) Attack

5.1. Baselines
The performance of different defences is evaluated on CI-
FAR10, CIFAR100 and ImageNet-100 [11] datasets, com-
prising of 10, 100 and 100 classes, respectively. The reso-
lution of images in the CIFAR10 and CIFAR100 datasets
is 32x32, while it is 256X256 in the ImageNet-100 dataset.
For all the experiments, VIT-B16 architecture is used. CI-



No AAS steps=2 steps=4 steps=6 steps=8 steps=10
Figure 1. Effect of the number of AAS attack steps when the proposed LPIPS distance is maximized followed by 100 step PGD attack. On
not using AAS (No AAS) attack, the perturbation generated by PGD-100 is more noisy.

No AAS steps=2 steps=4 steps=6 steps=8 steps=10
Figure 2. Effect of the number of AAS attack steps when cross-entropy (CE) loss is maximized instead of LPIPS distance, followed by
100-step PGD attack. Comparing the perturbation with Fig-1 where LPIPS distance is maximized, it can be seen that maximizing CE loss
generates less perceptual/more noisy perturbations, especially for smaller number of attack steps.

FAR100 is a more challenging dataset as compared to CI-
FAR10 because it has one-tenth the number of images in
each class along with a larger number of classes. We use
the ImageNet-100 dataset to show that the proposed attack
is generalizable to larger-resolution images as well. For all
the attacks and training, we consider an ℓ∞ threat model
with ϵ = 8/255. For all our attack and adversarial training
experiments, we use the codebase of Mo et al. [23] 1.

5.2. Evaluation Details
We train the VIT-B16 model using PGD-AT [22] along with
AWP [31] to evaluate the existing and proposed AAS attacks.
VIT-B16 is trained for 110 epochs using a cosine learning
rate schedule with a maximum learning rate of 0.1. SGD
with a momentum of 0.9 is used for training the model. We

1https://github.com/mo666666/When-Adversarial-Training-Meets-
Vision-Transformers

utilize additional data generated from DDPM [16] for all the
experiments on CIFAR10 and CIFAR100 datasets.

We evaluate PGD-AT + AWP trained VIT-B16 model
against several attacks like PGD [22], CW [5], AutoAttack
[8] and GAMA [26] attack. While AutoAttack [8] is the
strongest attack, it is computationally expensive. Amongst
the single-attack methods, which are relatively cheaper
in terms of compute, GAMA attack is the strongest one.
Amongst the multistep attacks except for AutoAttack, we
use 100 iterations for generating the attack. The details of
individual attacks is given by:
• Fast Gradient Sign Method (FGSM) [15]: FGSM is a

single-step attack which maximizes cross-entropy loss (de-
fined as LCE). The attack objective of FGSM is described
as follows:

argmaxx′LCE(fθ(x
′), y) s.t.||x′ − x||∞ < ϵ. (1)



• Projected Gradient Descent (PGD) [22]: PGD is a multi-
step version of FGSM where the perturbation is initialized
using random noise sampled from a uniform distribution.

• Carlini and Wagner (in short CW) [5]: CW attack max-
imizes max-margin loss (defined as LMM instead of the
standard cross-entropy loss used in PGD attack. The attack
formulation of the CW attack considered in this work is
shown below:

argmaxx′LMM (fθ(x
′), y) s.t.||x′ − x||∞ < ϵ. (2)

• Guided Margin Aware Attack (GAMA) [26]: GAMA
attack proposed to aid the initial optimization path by
maximizing the ℓ2 norm between the output logits of the
adversarial and the clean images along with maximizing
the standard max-margin loss. The objective function of
GAMA attack is shown as follows:

argmaxx′LMM (fθ(x
′), y) + λ||fθ(x

′
)− fθ(x)||

s.t.||x′ − x||∞ < ϵ. (3)

Over the training iterations, the value of λ is decayed.
• AutoAttack (AA) [8]: AutoAttack is an ensemble of four

attacks including three white box (Adaptive PGD with
cross-entropy loss, Adaptive PGD with difference of logits
ratio loss, Fast adaptive boundary attack [7]) and one black
box (square attack [2]). The details of these attacks are
described below:
– Adaptive PGD: APGD is the same as the standard PGD

attack but as opposed to PGD it adjusts the step size of
the attack automatically. An untargeted APGD is used
in the AutoAttack framework.

– Adaptive PGD with difference of logits ratio loss:
This attack uses the DLR loss instead of the standard
cross-entropy loss. Further, the target attack is used
in the AutoAttack framework. Therefore this attack is
expensive because its frequency depends on the number
of classes in the dataset.

– Fast Adaptive Boundary Attack (FAB): FAB attack
aims to find the minimum perturbation required to
change the true class predicted by the model. In the
AutoAttack framework, a targeted FAB attack is used
and it is the most expensive attack amongst all others in
the AutoAttack framework.

– Square Attack: Square attack is the only black box
attack present in AutoAttack. It is a search-based attack,
where randomly coloured squared and rectangles are
added to the input image and then they are retained
if there is an increase in loss value. Since the square
attack is a gradient-free attack, it helps to circumvent
and identify the models that are suffering from gradient
masking issues.

6. Details of the proposed Adaptive Attention
Scaling Adversarial Training (AAS-AT)

6.1. Baselines
We use the VIT-B16 model for all the experiments. VIT-
B16 is trained for 110 epochs using a cosine learning rate
schedule with a maximum learning rate of 0.1. SGD with
a momentum of 0.9 is used for training the model. We
utilize additional data generated from DDPM [16] for all
the experiments on CIFAR10 and CIFAR100 datasets ex-
cept for Debenedetti [10] we train for 300 epochs. We use
a pretrained ImageNet-1K initialization and also use gra-
dient clipping in all the experiments. We utilize simple
Pad-Crop-Horizontal Flip as the augmentations for training.
We compare the performance of the proposed AAS-AT with
the following adversarial training methods:
• PGD-AT [22]: PGD-AT performs the standard ten-step

PGD attack to generate the adversarial images and later
minimized the cross-entropy loss on the generated adver-
sarial images to train the model. The objective function of
PGD-AT is shown below:

argmaxx′LCE(fθ(x
′), y) s.t.||x′ − x||∞ < ϵ, (4)

min LCE(fθ(x
′), y). (5)

• Trades [33]: Trades maximizes the KL divergence (LKL)
loss between the adversarial and the clean image to gener-
ate the perturbations and later minimizes the combination
cross-entropy loss on clean image and KL divergence loss
between the clean and the generated adversarial image.
The objective function of PGD-AT is shown below:

argmaxx′LKL(fθ(x
′), fθ(x)) s.t. ||x′ − x||∞ < ϵ,

(6)
min LCE(fθ(x), y) + λLKL(fθ(x

′), fθ(x)). (7)

• Trades-AWP [31]: Trades-AWP proposes to first generate
the attack by maximizing the KL divergence between the
clean and the perturbed image and then perturb the weights
of the model within an ℓ2 norm perturbation bound (ρ).
Later the Trades adversarial training is performed on the
perturbed model. The objective function of AWP is shown
below:

θ
′
= θ + δ, δ = argmaxθ′(LCE(fθ′ (x), y)+

λLKL(fθ′ (x′), fθ′ (x)))− θ, s.t. ||θ′ − θ|| < ρ, (8)

argmaxx′LKL(fθ′ (x′), fθ′ (x))

s.t. ||x′ − x||∞ < ϵ, (9)

min LCE(fθ′ (x), y) + λLKL(fθ′ (x′), fθ′ (x)), (10)

θ = θ′ − δ. (11)



Algorithm 1 Adaptive Attention Scaling Adversarial
Training (AAS-AT)

1: Input: Network fθ(S) where S = {s1, s2, ..., sm} is
the pre-softmax scaling factor and m − 1 is the num-
ber of attention blocks in the model. Training Dataset
D = {(xi, yi)}, Adversarial Threat model: ℓ∞ bound
of radius ε, coefficient of KL divergence term β, Cross-
entropy loss ℓCE , number of epochs E, M training mini-
batches of size n, Maximum Learning Rate LRmax,
Frequency of AAS attack λ;

2: for epoch = 1 to E do
3: LR = 0.5 · LRmax · (1+cosine((epoch−1)/E ·

π));
4: for iter = 1 to M do
5: if epoch%λ == 0 then
6: δ = N (0, 1);
7: for steps = 1 to 10 do
8: if epoch%λ == 0 then
9: δ = δ +∇SLPIPS(fθ(S)(xi), fθ(S′ )(xi));

10: S
′
= Clamp(S + δ, 10−r, 1); % to prevent

zero scaling factors,we used r = 7%
11: else
12: δ = 0.001 · N (0, 1);
13: δ = δ +

εasc · sign (∇δKL(fθ(x)||fθ(x+ δ)));
14: δ = Clamp (δ,−εasc, εasc);
15: x̃ = Clamp (x+ δ, 0, 1);
16: if epoch%λ == 0 then
17: S = S

′
;

18: else
19: LTR(θ) = 1

n

n∑
i=1

LCE(fθ(xi), yi) +

β · KL(fθ(xi)||fθ(x̃i));
20: θ = θ − LR · ∇θ(LTR(θ));

6.2. AAS-AT Training Algorithm

In this section, we explain the proposed Adaptive Atten-
tion Scale Adversarial Training (AAS-AT). The detailed de-
scription of AAS-AT is shown in Algorithm 1. We train the
VIT-B16 model for 110 epochs (L2) using a cosine learning
rate schedule (L3). The proposed AAS attack is performed
every λ epoch (L5). Firstly, the AAS attack is initialized
using Gaussian noise (L6). Every λ epochs (L8) AAS attack
is performed where the LPIPS distance is maximized to per-
turb the pre-softmax scaling factors (L9) and later clamped
to lie between (10−r, 1) (L10). For the remaining epochs,
we perform the standard Trades [33] adversarial training
where the KL-Divergence between the clean and the adver-
sarial images is maximized to perturb the images (L12-L15).
Finally, if the task was to perturb the pre-softmax output
scaling factor, then the old scaling factors are reinitialized

using the new perturbed ones (L17). Otherwise, standard
Trades adversarial training occurs on the perturbed image
(L19-20) where the cross-entropy loss on the clean images
and KL Divergence between the clean and the adversarial
images is minimized.

6.3. Error Analysis
We perform multiple reruns of the proposed AAS-AT, and
we observe small variations in the robust and standard ac-
curacy across the reruns. We performed three reruns of
Trades+AAS-AT and observed 87.23% as the mean accuracy
and a standard deviation of 0.21% in clean accuracy. Against
AutoAttack, we observed 57.61% as the mean adversarial
accuracy and a standard deviation of 0.16%.

7. Ablation Experiments on proposed AAS at-
tack

As shown in Figure-3 (a) of main paper, on increasing the
number of attention blocks in which the pre-softmax val-
ues are scaled using the proposed AAS attack, the robust
accuracy on the CIFAR10 dataset falls continuously. Since
floating point errors occur in each of the attention blocks,
therefore when scaling is done for a larger number of atten-
tion blocks, the effect of gradient making is minimized, thus
leading to stronger attacks. Further, as shown in Figure-3
(b) of main paper, if the size of the model is increased by
adding up more attention blocks, the drop in robust accuracy
of the proposed AAS attack with respect to PGD-100 further
increases. This demonstrates the effectiveness of overcom-
ing gradient masking by using the proposed AAS attack.
Finally, we present the effect of increasing the number of
iterations of attack for PGD and AAS attacks in Figure-4
of main paper. As can be seen, AAS attack saturates earlier
than PGD, and PGD is not able to close up the gap between
the two attacks even on using 1000 iterations. As shown
in Table 1, incorporating AAS attack with PGD-100 and
GAMA-PGD indeed gives improved performance over these
attacks for different perturbation radii. Further, the boost
in the attack strength obtained by incorporating AAS attack
increases with an increase in perturbation radius. This is
because the gradient masking effect is expected to increase
with an increase in perturbation radius. On CIFAR10, the
gains by incorporating AAS attack with ϵ=16 is over 7.55%,
while 3.09% with ϵ=8. For GAMA attack, we observe im-
proved attack strength of 5.08% for ϵ=16, while 2.17% for
ϵ=8. Similar observations are seen on CIFAR-100.

As observed, on incorporating AAS-AT with AdvCam-
AT, we obtain gains of over 1.16%. This shows that including
AAS-AT helps in improved robustness. Further, if the model
is trained using AdvCam-AT, then there is a drop of 2.08%
on including AAS attack in the evaluation along with the
AdvCam-1000 attack. Thus, AdvCam-1000 is not able to
generate an optimal attack.



Table 1. Effect of increase in the perturbation radius.
CIFAR10 CIFAR100

ϵ/255 PGD-100 PGD-100 + AAS GAMA GAMA + AAS PGD-100 PGD-100 + AAS GAMA GAMA + AAS

0.00 87.43 87.31 87.43 87.31 62.47 62.03 62.47 62.03
4.00 72.13 69.76 70.87 69.16 41.87 38.46 39.47 38.03
8.00 61.10 58.01 59.78 57.61 30.01 27.02 28.97 26.08

12.00 48.87 43.48 46.79 42.86 27.46 22.13 24.63 21.46
16.00 42.96 35.41 40.03 34.95 24.97 19.30 22.46 18.76

Table 2. Results of Semantic Attack (AdvCam) on ImageNet-100.

Method Clean Accuracy AdvCam-1000 AdvCam-1000 + AAS

AdvCam-AT 76.84 65.18 63.10
AdvCam-AT + Ours 76.96 64.3 64.26

8. Performance on Swin Transformer and
LeViT

We train Swin Transformer [21] Swin-T) and LeViT [17]
without distillation head using PGD-AT and AWP and
present the evaluation on different attacks with and without
incorporating our AAS attack in Table 3. On incorporating
the AAS attack, an improvement in attack strength across all
the architectures on both CIFAR10 and CIFAR100 datasets
is observed.

9. Adversarial robustness of CNNs verses VITs
We would like to highlight Table-7 (b,d) of Debenedetti et
al. [10]. We present an analysis by considering WideResNet-
28-10 and ReNet50 as CNN models and XCIT-S12 for VIT
(as used in [10]) in Table 4. Note that robust and standard ac-
curacy of CNNs are taken from Table-7 (b,d) of [10]. As can
be seen, XCIT-S12+Ours outperforms around 1.4 times the
parameter count WideResNet-28-10 model by over 5.04%
on CIFAR100 and 2.5% on CIFAR10. This shows that VITs
exhibits superior adversarial robustness than CNNs.
• As observed, the computational complexity (measured
in FLOPS) on incorporating AAS attack increases by
about 0.19% and attack time increases by about 5.11%.
We also present the training time comparison of PGD-
AT, Trades, Ensemble of PGD-AT+Trades, PGD-AT+Ours
and Trades+Ours and Ensemble of PGD-AT+Ours and
Trades+Ours for VIT-B16 model on CIFAR10 dataset in
Table 7.

10. Ablation Experiment on our Defense (AAS-
AT)

As shown in Figure-5 (a,b) of main paper, the proposed de-
fense PGD-AT + AAS-AT is stable to using AAS attack
every 5 − 40 epochs. Using AAS attack too frequently or
using it only once/twice in the entire training leads to subop-
timal performance. The effect of varying ϵ and performing
PGD-20 attack during evaluation is shown in Figure-5 (c)

of main paper. Since the proposed AAS-AT does not have a
large scale of pre-softmax outputs, PGD-20 attack is stronger
for PGD-AT + AAS-AT (this is also evident from Table 5
of main paper) as compared to the baseline PGD-AT. Since
PGD-AT suffers from gradient masking, thus its accuracy
does not reach 0% even on using an ϵ = 100/255. But
we get zero robustness on using ϵ = 65/255. This shows
AAS-AT does not suffer from gradient masking. Finally,
in Figure-5 (d) of main paper, we show that on using AAS
attack along with PGD-20, the accuracy becomes zero for
both PGD-AT as well as the proposed AAS-AT at ϵ close to
60/255. Thus, the proposed AAS attack is able to overcome
the gradient masking effect in PGD-AT model.

11. Performance on Patch Attacks
We observe improved performance on combining AAS at-
tack with existing Patch attacks. We incorporate our AAS
attack with Patch-Fool [13] and Gu et al. [18]. We perform
this analysis on the ImageNet-100 dataset with a normally
trained VIT-B16 model giving 83.64% clean accuracy in
Table-8. We consider that the attacker can perturb a single
patch of 8×8 dimensions in the image.

Due to the simplicity of the proposed AAS attack, in-
corporating it along with existing patch attacks helps in
improving their attack strength. On incorporating AAS with
Sparse Patch-Fool [13], we observe improved attack strength
by over 2.24% and with Gu et al. [18], gains of over 4.46%
are observed.

12. Performance on Semantic Attack (Adv-
Cam)

We utilize the AdvCam attack proposed in [12] to generate
adversarial samples for training. For training VIT-B16 model
on ImageNet-100, we use a 10-step attack with a coefficient
of the adversarial loss linearly varying from 1000 to 10000
over these 10 steps. For all these experiments, we specify the
size of the attack region as 40×40 and use a random image



Table 3. Effectiveness of AAS attack on Swin Transformer and LeViT.
Data Model Attack Clean Acc. w/o AAS Robust Acc. w/o AAS Clean Acc.+ AAS Robust Acc. + AAS

CIFAR10

VIT-B16
PGD-100 87.43 61.10 87.31 58.01
GAMA 87.43 59.78 87.31 57.61

Swin-T
PGD-100 76.03 50.13 76.16 48.48
GAMA 76.03 49.03 76.16 47.32

LeVIT-256
PGD-100 82.42 56.13 82.16 53.87
GAMA 82.42 55.34 82.16 53.39

CIFAR100

VIT-B16
PGD-100 62.47 30.01 62.03 27.02
GAMA 62.47 28.97 62.03 26.07

Swin-T
PGD-100 56.79 26.49 56.81 24.16
GAMA 56.79 25.79 56.81 23.78

LeVIT-256
PGD-100 60.10 27.06 60.03 25.79
GAMA 60.10 26.74 60.03 25.46

Table 4. Adversarial robustness of CNNs and VITs.
CIFAR10 CIFAR100

Model Parameter Count Clean Accuracy AA accuracy Clean Accuracy AA accuracy

WideResNet-28-10 [10] 36.5M 87.11 54.92 59.23 28.42
ResNet-50 [10] 25M 84.8 41.56 61.28 22.01
XCIT-S12 [10] 26M 90.06 56.14 67.34 32.17
XCIT-S12 [10] + Ours 26M 90.78 57.42 67.12 33.46

Table 5. Number of samples required for AAS attack.
Data Number of samples Clean GAMA

Accuracy Accuracy

0 87.43 59.78
500 87.26 58.31

CIFAR10 1000 87.18 57.73
1500 87.24 57.66
2000 87.19 57.67

50000 (reported) 87.31 57.61

0 62.47 28.97
500 61.84 28.03

CIFAR100 1000 62.12 27.16
1500 62.01 26.42
2000 61.94 26.13

50000 (reported) 62.03 26.08

from the same class for the target style. For evaluation,
we use the same AdvCam attack but with 1000 steps. We
present our observations in Table 2.

13. Performance on large datasets: ImageNet-
100, ImageNet-200

To analyze the scalability of our AAS-AT, we train VIT-B16
using PGD-AT and Trades on 100 class - randomly chosen
subset of the ImageNet dataset. We also trained separate
models by incorporating AAS-AT with PGD-AT and Trades.
Due to computational limitations, we are currently not able
to perform adversarial training on the ImageNet dataset. We
will certainly consider extending our method to ImageNet

for the final version.
We have compared the performance of the proposed AAS

attack on ImageNet-100 in Table-4 of main paper, where we
observe around 3.5% improvements over PGD-100 and 2.2%
improved results over the GAMA attack. This highlights
that we can overcome the floating point underflow errors
and the proposed AAS attack gives consistent gains over
the existing attacks. The results against Auto-Attack on the
5000 images validation set are presented in Table-5 of main
paper. On Auto-Attack, we observe gains of over 1.54%
on incorporating AAS-AT with PGD-AT and 1.58% with
Trades.

14. Discussion on Computational Efficiency
We would like to highlight that in all our experiments, we
first train a robust vision transformer model using some ad-
versarial training method and then perturb the pre-softmax
scaling factors using the same training data. This model is
then given to the attacker, who can craft any attack. Thus, the
weights and pre-softmax scaling factors are fixed and cannot
be changed by the attacker. Therefore, AAS attack can be
considered like an additional training epoch (on clean im-
ages). If the scaling factors are perturbed right after training
itself (when the training data is available), then this limi-
tation can be overcome. But even if this is not done, we
observe that securing the entire training set is not important
during inference; rather, less than 5% of the training set on
CIFAR10 and CIFAR100 can give a reasonable estimate of
the scaling factors.
• We present an analysis of the amount of training data



Table 6. Computational time in Flops on CIFAR10.
Attack # Forward passes # Backward passes Flops Attack Clean Robust

(attack) time (sec) Accuracy Accuracy

PGD-100 100 100 2.2380E + 13 1153 87.43 61.1
PGD-100 + AAS 100 (PGD) + 1 (AAS) 100 (PGD) + 1 (AAS) 2.2454E+13 1212 87.31 58.01
GAMA 200 100 2.9840E+13 1411 87.43 59.78
GAMA + AAS 200 (GAMA) + 1 (AAS) 100 (GAMA) + 1 (AAS) 2.9914E+13 1470 87.31 57.61

Table 7. Training Time Comparison on CIFAR10.
Method Training time (sec) Clean Accuracy AA Accuracy

PGD-AT 32315 86.14 53.14
PGD-AT + Ours 32613 85.32 56.61
Trades 33213 86.31 54.03
Trades + Ours 33546 87.46 57.34
Ensemble (PGD-AT, Trades) 65528 88.03 56.36
Ensemble (PGD-AT + Ours, Trades + Ours) 66159 88.06 58.01

Table 8. Performance of AAS on Patch Attack on ImageNet-100.

Method Robust Accuracy

Sparse Patch-Fool [13] 71.36
Sparse Patch-Fool [13] + AAS 69.12
Gu et al. [18] 74.98
Gu et al. [18] + AAS 70.52

needed to optimize the pre-softmax scaling factors on CI-
FAR10 and CIFAR100 datasets in the Table 5. To test the
robustness of the model, we use the GAMA attack. As can
be seen, on CIFAR100, using 2000 training images (around
4% of total training images) is enough to get a close estimate
of the pre-softmax scaling factors. On CIFAR10, around
1000 training images can give a close estimate.
• We present the cost of computational time in terms of flops
for PGD-100, GAMA, PGD-100 + AAS and GAMA + AAS
attacks on VIT-B16 in Table 6 on CIFAR10 dataset for both
clean and robust accuracy. We consider same number of
forward and backward passes. We have also highlighted the
attack time in seconds.
• On incorporating AAS-AT with PGD-AT in Table 7, we
observe an increase of about 0.92% in the training time
and about 1% with Trades. We also include the results of
an ensemble of PGD-AT and Trades and an ensemble of
PGD-AT+Ours and Trades+Ours. We take the average of
the output softmax distribution of two models and report the
highest confidence class as the predicted class. In the case
of an ensemble, we observe an increase in training time by
around 0.96%.

15. Limitations
In this work, though we propose a gradient-based optimiza-
tion to get the scaling factors automatically, it is bound to
give an approximate value. It is difficult to analyze how
close this is with respect to the optimal scaling factors one

can find by trying out all possible combinations of scaling
factors. Further, on perturbing the scaling factors, we ob-
serve a drop in the clean accuracy. This is bound to happen
since the model is not finetuned on these perturbed scaling
factors. Though there is a drop in the clean accuracy, it is
not significant.

16. Social Impact
By highlighting the reason for gradient masking in VITs, this
work aims to improve the robustness of VITs and prevent
the development of future defences, which might give a false
sense of security because existing attacks are weak on VITs.
We hope that this work will help in the development of more
robust defences on VITs in the future.
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