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7. Contradiction on other methods
Here, we extend our claim of the conflict between the two
objectives to invariant learning and correlation-aware learn-
ing as we discussed in Section 3 in main paper. Under the
data bias where Y and A are not independent, it can be in-
ferred that zX and A will also be dependent when perfect
predictiveness of Y from zX is achieved. Thus, the pre-
dictiveness goal would conflict with the fairness objective,
which is to learn z that is invariant with respect to the sen-
sitive information A.

In correlation-aware learning, the goal is to disentangle
the latent code into zd and zr, which corresponds to the two
sets of features: Xd which are descendants of A; and Xr

which are irrelevant to A. For instance, if A is defined
as gender, the descendant attributes would be defined as
Xd = {Makeup, Mustache, · · · }, and irrelevant attributes
as Xr = {Age, · · · }. Then the predictiveness objective is
to recover Xd and Xr from corresponding latent codes, and
the fairness objective is to learn two codes that are indepen-
dent. In this scenario, it is possible that some features in Xd

and Xr have causal relationships. For instance, Age is also
the cause of Mustache along with gender, which leads to a
correlation between A and Xr. As a result, it may not be
possible to achieve both the independence of latent codes
zd and zr and perfect recovery of Xd and Xr at the same
time, as these objectives contradict each other. The con-
flict between performance and fairness objectives of invari-
ant learning and correlation-aware learning is depicted in
Figure 7.

8. Theoretical Analysis
Continuing from the setting we are interested in, we assume
that target labels and sensitive information are not perfectly
separable, making it more applicable to real-world situa-
tions. Although trade-offs and inherent correlations exist,
prior research primarily focused on learning fair represen-
tations by requiring the latent representation to be indepen-
dent of the sensitive attribute. Consequently, the dual objec-
tives of fairness and performance are in conflict with each
other, as illustrated in Figure 2 of main paper. Since two ob-
jectives (Goal1 and Goal2) are in conflict with each other,
achieving the global optimum for each objective simultane-
ously becomes infeasible.

Here, we provide informal proof as the theoretical anal-
ysis of the impossibility of invariant learning (Fig 1-(a)).
Given the fact that Y ̸⊥ A, let’s first assume we trained
the optimal classifier that predicts Y from Z by minimizing
cross-entropy loss (Goal 1). Since the cross-entropy loss is

lower bounded by conditional entropy as

CE(Y, Ŷ ) = HY (Ŷ ) ≥ H(Y |Ŷ ), (9)

when optimal classifier f∗
θ minimizes cross-entropy loss,

we can say Y ≈ Ŷ . Also, this implies maximizing mutual
information between Z and Ŷ (or Y ), which yields

Iθ(Z; Ŷ ) = Hθ(Ŷ )−Hθ(Ŷ |Z) ≈ Hθ(Ŷ ), (10)

which suggests Hθ(Ŷ |Z) ≈ 0, meaning that Ŷ is determin-
istic with the optimal classifier f∗

θ given Z.
Since Ŷ is solely determined by Z,

P (Ŷ |Z,A) = P (Ŷ |Z). (11)

If we assume that we can learn Z that is independent of A
(Goal 2), we have

P (Z|A) = P (Z). (12)

When we multiply two equations on each side, we have

P (Ŷ |Z,A)P (Z|A) = P (Ŷ |Z)P (Z)

⇔ P (Ŷ , Z|A) = P (Ŷ , Z)

⇔
∫
Z
P (Ŷ , Z|A) =

∫
Z

P (Ŷ , Z)

⇔ P (Ŷ |A) = P (Ŷ ),

which implies that Ŷ and A are independent, contradicting
the fact that Y ̸⊥ A, since Ŷ ≈ Y .

Also for disentanglement learning (Fig 1-(b)), we prove
the case without the connection between Y and zA [7,8] for
simplicity. Similar to the proof of invariant learning sce-
nario, let’s assume we have optimal classifiers f∗

θy
and f∗

θa
that perfectly predicts Y and A from zX and zA (Goal 1),
respectively, such that Ŷ (resp. Â) is solely determined by
zX (resp. zA).

Then we can write

P (Ŷ |zX , Â) = P (Ŷ |zX), (13)

since Ŷ is determined only by zX regardless of Â.
If we assume fairness objective is satisfied (Goal 2), we

have
P (zX |zA) = P (zA). (14)

Since Â is deterministic given zA, and zA ⊥ zX , we can
naturally say that Â ⊥ zX , that is

P (zX |Â) = P (zX). (15)
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(a) Data flow of invariant learning (b) Data flow of correlation-aware learning

Figure 7. Illustration of the contradiction between fairness and performance goals in different methods. The methods of invariant learning
and correlation-aware learning are in conflict when the feature to be reconstructed is not independent of the sensitive attribute. This can
lead to a trade-off between fairness and performance, which can make it difficult to achieve both goals simultaneously.

When we multiply (13) and (15) on both sides, we have

P (Ŷ |zX , Â)P (zX |Â) = P (Ŷ |zX)P (zX)

⇔
∫

zX
P (Ŷ , zX |A) =

∫
zX

P (Ŷ , zX)

⇔ P (Ŷ |A) = P (Ŷ ),

which implies that Ŷ and A are independent, contradicting
the fact that Y ̸⊥ A, since Ŷ ≈ Y and Â ≈ A.

This establishes the theoretical foundation that the fair-
ness and performance goals, which have been extensively
applied in prior research, are inherently conflicting with
each other.

9. Relation between conditional mutual infor-
mation and conditional independence

Here, we prove zero conditional mutual information indi-
cates conditional independence. Let us first define

F (x, y) :=
P (x|z)P (y|z)
P (x, y|z)

. (16)

Then we have

∑
x,y

P (x, y|z)F (x, y) =
∑
x,y

P (x|z)P (y|z) = 1. (17)

We can rewrite the conditional mutual information with
F (x, y) as

I(X;Y |Z) = −
∫
Z

∑
x,y

P (x, y|z) logF (x, y)

=

∫
Z

∑
x,y

P (x, y|z)F (x, y)− 1

−
∑
x,y

P (x, y|z) logF (x, y)

=

∫
Z

∑
x,y

P (x, y|z)
[
F (x, y)− 1− logF (x, y)

]
= 0.

(18)

Since F (x, y)−1− logF (x, y) ≥ 0 (log t ≤ t−1 for all t),
conditional mutual information is summing over the multi-
plication of two non-negative terms. Thus, if I(X;Y |Z) =
0, it naturally indicates F (x, y) − 1 = logF (x, y) and the
equality holds only when F (x, y) = 1. This implies

F (x, y) = 1 ∀x, y, (19)

which yields conditional independence between X and Y
given ZR.

Since I(X;Y |Z) is non-negative and PX,Y |Z(x, y|z) ≥
0 and log

PX,Y |Z(x,y|z)
PX|Z(x|z)PY |Z(y|z) ≥ 0, minimizing CMI, i.e.,

I(X;Y |Z) = 0, requires

log
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)
= 0 ∀x, y, (20)

and this naturally indicates conditional independence

PX,Y |Z(x, y|z) = PX|Z(x|z)PY |Z(y|z). (21)

Thus when CMI, Iθ(Â; Ŷ |zR), is minimized to zero, we
can achieve the conditional independence between Ŷ and Â
given ZR, i.e., Ŷ ⊥ Â|zR.
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Figure 8. Feature translation of FADES on CelebA dataset

10. Detailed experimental setup: FADES

10.1. Description of disentangled subspace

A detailed explanation of the disentangled subspace can
be found at the beginning of Section 5. To reiterate,
we partition the latent representation into four subspaces:
zY , zA, zR, and zX . In this setup, zY and zA account for the
information solely related to Y andA, respectively.

For an example of image classification to predict smil-
ing [25], Y -related zY may include semantic information
related to attributes such as {high cheek, mouth slightly

opened, narrow eyes, etc}, while A-related zA may include
semantics like {bald, facial structure, etc}. On the other
hand, zR is introduced to learn information relevant to both
Y and A such as {wearing lipsticks, mustache, etc}, which
could impact classifying both smiling and gender. Lastly,
zX is employed as an auxiliary space to guide the informa-
tion that is irrelevant to both Y and A, e.g., a background of
the image.
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Smiling Blond Hair Attractive
Acc ↑ EOD ↓ DP ↓ Acc ↑ EOD ↓ DP ↓ Acc ↑ EOD ↓ DP ↓

FADES 0.918 0.032 0.125 0.931 0.119 0.158 0.764 0.292 0.318
GVAE [10] 0.919 0.049 0.133 0.944 0.496 0.228 0.780 0.523 0.430
FFVAE [6] 0.891 0.075 0.071 0.924 0.297 0.171 0.746 0.335 0.324

ODVAE [47] 0.885 0.038 0.101 0.890 0.431 0.169 0.716 0.599 0.459
FairDisCo [31] 0.839 0.074 0.051 0.914 0.481 0.189 0.747 0.549 0.357

FairFactorVAE [32] 0.914 0.055 0.136 0.912 0.312 0.166 0.710 0.474 0.357

Table 3. Evaluation of downstream classification tasks on different target labels on CelebA dataset. FADES consistently exhibit better
balance in fairness and accuracy.

Original
(Smiling female)

zx: Identity
[N, zy, zs, zr]

zy: Smiling
[zx, N, zs, zr]

za: Gender
[zx, zy, N, zr]

zr: Relevence
[zx, zy, zs, N]

Figure 9. Reconstruction by replacing specific code with noise.

10.2. How to set subspace dimensions

In line with previous research, we opted for a single di-
mension in the case of the tabular dataset. For the im-
age dataset, specifically the CelebA dataset, we maintained
equal dimensional sizes for zY , zA, zR ∈ Rd, ensuring the
dimensions are a power of 2. For the reported results, we
assigned d = 32 empirically chosen by grid search. It
is worth noting that the total latent dimension is fixed at
R512 across all methods. Thus in our method we have
zX ∈ R512−3×32 = R416.

Our empirical observations indicated that dimensions
larger than 64 for d led to a decline in reconstruction perfor-
mance. This degradation may be attributed to the excessive
allocation of information to each subspace, ultimately com-
promising the reconstructive capacity.

11. Additional Experiments
11.1. Fair classification on CelebA

CelebA dataset [33] is widely employed to benchmark fair
classification of vision models. On top of “Smiling” as the
target label as reported in the main paper, we also con-
ducted experiments considering other widely selected tar-
get labels, such as “Blond Hair” and “Attractiveness” under
gender bias. Full comparison is summarized in Table 3. As
in the results, FADES consistently demonstrates superior
balance in fairness and accuracy across different target la-
bels. Specifically, FADES achieves an accuracy level that is
on par with the best-performing models while significantly
improving fairness violations. This also validates the ef-
fectiveness of the proposed fair disentanglement learning

method.

11.2. Counterfactual generation

In this subsection, we demonstrate the results of feature
translation on CelebA dataset. In Figure 8, we display a grid
of images generated by replacing certain latent codes. The
first row is the direct reconstruction of the original input im-
age in the last row. The intermediate rows are reconstructed
images following the composition in the Y-axis. The super-
script indicates the index of the image in each column. For
instance, the second row, [z(0)X , zY , zA, zR], generates im-
ages that have irrelevant features of the input image in the
first column z(0)X , such as blond hair, white background, etc,
while following each column’s zY , zA, and zR. We observe
that sensitive and target information is effectively translated
to different images. Additionally, we can effectively trans-
late both sensitive and target information simultaneously,
allowing us more freedom in generating counterfactuals.
For example, given a real image of a smiling female, we
can generate {not smiling male, not smiling female, smil-
ing male}. This enables us to improve individual fairness
[14], which is to ensure individuals with similar features
but a different sensitive attribute receive similar outcomes.

Furthermore, we visualize contribution of latent codes
by replacing each code to normal noise in Figure 9. We
observe specific feature changes by altering each code, e.g.,
zA ∼ N in 4th image altered gender, which aligns with
Figure 8.

To quantitatively analyze the results, we measure FID
score [20] between the direct reconstruction of the input im-
age and the reconstructed images with permuted sensitive
code as

∆FID = FID(X̂, X̂perm), (22)

where X̂ is reconstruction of X from VAE-based models
and X̂perm is reconstruction with randomly permuted sen-
sitive code zA within the evaluation set. The FID score dif-
ference, ∆FID, shows how natural the image translation is
without image distortion or decrease in quality. As in Ta-
ble 4, FADES achieves a significantly lower FID score dif-
ference compared to other methods for fair representation
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learning, which indicates FADES renders counterfactuals
with superior quality.

FADES FFVAE GVAE ODVAE
∆ FID ↓ 1.166 3.712 1.407 15.08

Table 4. FID score difference between original reconstruction and
random perturbation in sensitive code.

Figure 10. Reconstruction on an unbiased set of C-MNIST. Our
method is the only one that correctly recovers both colors and dig-
its, demonstrating its effectiveness in achieving disentanglement
of the information.

11.3. Fair image reconstruction

To further qualitatively assess vision tasks, we reconstruct
samples from the unbiased test set (i.e., all colors are uni-
formly distributed over the digits) of the C-MNIST dataset.
The effectiveness of disentangled methods can be measured
by their ability to accurately reconstruct both the color and
digit. The results are shown in Figure 10, where we observe
that only FADES correctly recovers both color and digit, in-
dicating its ability to effectively disentangle color and digit
information in the latent space.

In addition, we illustrate t-SNE [48] visualization of the
target code from the test set generated by each method, as in
Figure 12A∼12H to better understand the distribution and
disentanglement of the learned representation. Each figure
has two subfigures, the first is colored based on Digit and
the second is colored based on Color. Since the goal is to
filter out the sensitive information (color), we expect the
distribution to be clustered by digit. However, most of the

(a) White Female (b) StyleCLIP (c) StyleCLIP + FADES

Figure 11. Style transfer by StyleCLIP and FADES extension. The
example is to alter the source image (a) to “A doctor with curly
hair”. Fair text-to-image modification should be gender-invariant.

Acc (Digit)↑ Acc (Color)↑
FADES (Ours) 74.42 86.76

GVAE [10] 62.24 67.83
FFVAE [6] 60.18 80.70

ODVAE [47] 55.59 64.26
FairDisCo [31] 54.54 98.79

FairFactorVAE [32] 66.47 64.92

Table 5. Digit and color recovery on unbiased C-MNIST trained
on 95% color bias.

comparing methods have weak separation with respect to
the digit information. Moreover, ODVAE (Figure 12B) and
β-VAE (Figure 12H) have stronger corrlation with color
than digit. In contrast, FADES achieve better separation
with respect to digits, while different colors are uniformly
distributed among the clusters. This also aligns with the
results in Table 2 of the main paper.

Furthermore, we conducted experiments on the extreme
setting (95% bias) with severe corruption (σ = 0.005) [41]
as in Table 5. FADES significantly outperforms other meth-
ods on recovering both digit and color information. Note
that FairDisCo requires color (sensitive) information as the
input of decoder. This also validates that FADES better dis-
entangle the sensitive and target information even under se-
vere bias, showcasing its robustness and effectiveness.

11.4. Text-to-image editing

To further validate the capability of FADES, we integrated
it as an adaptor on top of a pre-trained, frozen CLIP [45] im-
age encoder, and trained with Facet dataset [17] to augment
fairness in vision-language tasks. Notably, VLM exhibits
career-gender biases. Specifically, in Figure 11, StyleCLIP
[43] exhibits gender bias despite its identity preservation
loss. In contrast, FADES addresses the bias while preserv-
ing effective modification.

Further, we evaluate CLIP with FADES in Table 6 on
Facet dataset, where FADES shows enhanced fairness with-
out compromising performance compared to linear probing
(ERM), suggesting its applicability to various VLM tasks
such as search and image retrieval with fairness. Also, we
present an ablation study regarding contribution of each loss
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(a) Digit (b) Color

(A) FADES

(a) Digit (b) Color

(B) ODVAE [47]

(a) Digit (b) Color

(C) GVAE [10]

(a) Digit (b) Color

(D) FFVAE [6]

(a) Digit (b) Color

(E) FairDisCo [31]

(a) Digit (b) Color

(F) FairFactorVAE [32]

(a) Digit (b) Color

(G) FactorVAE [24]

(a) Digit (b) Color

(H) β-VAE [21]

Figure 12. t-SNE visualization of learned representation corresponds to sensitive-irrelevant information on unbiased C-MNIST test set.

Method Top-1 Acc. (%) Top-3 Acc. (%)

WG Avg Gap WG Avg Gap

Zero-shot 2.78 53.47 50.69 15.28 76.43 61.15
Linear prob 0.00 65.67 65.65 0.00 85.55 85.55
FADES 69.83 69.22 0.61 84.98 85.26 0.28
(Abl.) LELBO 16.34 17.27 0.98 37.34 37.34 1.47
(Abl.) w/o LCMI 65.87 67.58 1.71 81.73 82.19 0.46
(Abl.) w/o Lreg 30.51 34.15 3.63 59.11 60.05 0.94

Table 6. Performance of CLIP (ViT-B/32) [45] on facet dataset [17]. WG: Worst Group, Gap: Difference between WG and Avg.

terms in the last 3 rows. Each row corresponds to training
with only LELBO, without LCMI, and without Lreg. It shows

that FADES achieves optimal fairness while retaining accu-
racy.
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12. Limitation and Discussion
The limitations of our work can be summarized in two folds.
Firstly, while we address the contradiction between fair-
ness and performance in previous works under certain data
bias, there are many different sources that cause fairness
violations in algorithms. FADES covers one of the main
causes, i.e., unwanted correlation between sensitive and tar-
get information, however, there are some other well-known
causes, such as under-representation, model bias, missing
or noisy features, etc. In real-world scenarios, these do not
usually occur alone. As future work, it would be interesting
to theoretically extend our approach to mitigate fairness vi-
olations under different causes or multiple sources of bias.
Secondly, our method requires both target and sensitive in-
formation during the training phase, which may not be al-
ways available, since labeling is demanding or sometimes
inaccessible due to laws and regulations. Moreover, one
could consider extending our concept to an unsupervised
manner in order to learn fair disentangled representation
without the need for labels.
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