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Supplementary Material

Overview
This supplementary material introduces further details

and experimental results of our proposed method, WateRF.

• Section A introduces a use case of our method.

• Section B explains the details about the pre-trained wa-
termark decoder.

• Section C provides further experimental results, including
patch-wise loss, robustness results on 500 messages, and
quantitative results of additional message bits of 32 and
48 bits.

A. Use case of WateRF
This section aims to provide more details about the use

case of WateRF. As a use case, 3D content creators can
train an initial NeRF model, denoted as Fθ0 , with one’s
own dataset, to create a 3D scene or content with NeRF
model. After the creator has finished training the NeRF
model, the creator can transfer the trained NeRF model into
a watermarked model, Fθ, by fine-tuning the trained NeRF
model with our proposed method. The fine-tuning process
ensures that all rendered novel viewpoint images from the
Fθ contain watermarks. Even if the Fθ is shared as an open
source or misappropriated by an user, the owner(creator) of
the NeRF model can extract the message that represents
copyright from the 2D images, rendered by the user from
the NeRF model at every viewpoint. Furthermore, the pre-
training process of the watermark decoder, which includes
a distortion layer, allows for effective extraction of the mes-
sage from images that have been subjected to attacks aiming
to erase the watermark.

B. Details on pre-training decoder
B.1. Architectures and implementation details

Architectures. We use a CNN-based encoder and decoder,
similar to the architecture of HiDDeN [7]. The encoder is
composed of 4 Conv-BN-ReLU (CBR) blocks with 64 fil-
ters, 3 × 3 kernels, stride 1, and padding 1. The decoder
consists of 7 CBR blocks with 64 filters. After the last CBR
block, an average pooling layer and L × L linear layer,
where L is message length, follows. The distortion layer has
crop, scaling, and JPEG compression. For more details, we
refer the reader to the original paper [7].

Implementation details. We train the HiDDeN [7] on MS-
COCO dataset [2] with images having resolution of 256
× 256. The optimization is performed with Lamb opti-

Figure 1. Whitening effect. These bar charts show the probability
of decoding 1 from bits by a pre-trained decoder before and after
whitening for NeRF datasets (Blender and LLFF).

mizer [6] for 300 epochs on a single GPU. The parameters
of the distortion layer are set to 0.3 or 0.7 for crop and scal-
ing. The JPEG compression is set to 50 or 80. Since we
only need a decoder, we set the message loss parameter to
1 and the image loss parameter to 0. Thus during the train-
ing process, only the message loss will be minimized. This
Hidden [7] training only needs to be performed once per bit.

B.3. Decoder with whitening

After training HiDDeN [7], we only use a decoder to
fine-tune the model. We conduct PCA whitening to the lin-
ear layer. The input of the pre-trained decoder is a vanilla
image, where no watermark is applied in the fine-tuning
process. We remove the bias of decoded message bits. Be-
fore whitening in Fig. 1, the decoded bits have a bias where
the probabilities are close to 1 or 0 appear only in certain
positions. However, after whitening in Fig. 1, the probabili-
ties of each bit become close to 0.5, and the bias is removed.
Thus we can efficiently fine-tune for random message bits.



Methods TensoRF [1] NeRF [5]

DWT Lpatch Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓ Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

– – 95.54 20.22 0.747 0.1518 77.39 23.92 0.899 0.0619
✓ – 95.56 27.80 0.896 0.0584 94.05 22.91 0.882 0.0784
– ✓ 72.68 32.80 0.944 0.0392 71.54 27.43 0.933 0.0394
✓ ✓ 95.67 32.79 0.948 0.0334 94.24 28.81 0.954 0.0252

Table 1. Ablation study to see the effect of our proposed two main methods: Discrete Wavelet Transform (DWT) and patch-wise loss
Lpatch. We evaluate bit accuracy, PSNR, SSIM, and LPIPS for 16 bits and every NeRF dataset (Blender and LLFF).

None JPEG comperssion 10%

Brightness 2.0 Crop 50% Combined

Figure 2. Identification results. Average of the bit accuracy for every 500 messages and representation type. The combined distortion
consists of crop 50 %, JPEG compression 10 %, and brightness with factor 2.0. We show the results on 16 bits.

C. Additional results

C.1. Patch-wise loss

There exists a trade-off relationship between bit accuracy
and rendering quality. In other words, the high bit accuracy
brings the low rendering quality. Thus, it is necessary to
adjust the trade-off. As shown in Tab. 1, our patch-wise loss
improves the image quality while increasing bit accuracy.

C.2. The identification/detection experiment

This experiment is designed to verify if the NeRF model
effectively fine-tunes for a single message and if the wa-
termark survives combined distortion. For evaluation iden-
tification, we fine-tune 500 models with random messages.
Each model generates 200 images at different viewpoints.
For each of these 100K watermarked images, we decode the
message and evaluate bit accuracy. In Fig. 2, we show that
our methods effectively fine-tune NeRF for random mes-
sages.

C.3. Quantitative results for more bit lengths

We show results for more lengths of bits. The results of
bit accuracy and reconstruction quality for 32 bits and 48
bits are shown in Tab. 2. We achieve state-of-the-art perfor-
mance on longer message bits.

GT CopyRNeRF Ours (w/ TensoRF) Ours (w/ NeRF)

Figure 3. Comparisons on test-set views for scenes from Lego
dataset. Our method preserves color value better than CopyRN-
eRF [3].

C.4. Qualitative results

In Fig. 3, We present an ablation study to show that our
method can capture colors better than CopyRNeRF [3]. We
provide all results rendered from original NeRF model, wa-
termarked NeRF model (Fig. 4, 5, 6, 7), and the differences
(×10) between the two images as an ablation study.



32 bits 48 bits

Methods Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓ Bit Acc(%)↑ PSNR ↑ SSIM ↑ LPIPS ↓

HiDDeN [7]+NeRF [5] 50.11 26.24 0.913 0.038 50.04 26.16 0.908 0.043
CopyRNeRF [3] 78.08 26.13 0.896 0.041 60.06 27.56 0.895 0.066

Ours (w/ NeRF [5]) 86.81 27.20 0.944 0.033 70.43 28.35 0.925 0.037
Ours (w/ TensoRF [1]) 88.58 31.19 0.936 0.040 85.82 30.86 0.930 0.040

Table 2. Bit accuracies and reconstruction qualities comparison with baselines. We show the results on 32 and 48 bits. The results are
evaluated in the same way as baselines. The best performances are highlighted in bold.

Figure 4. Reconstruction qualities of various rendering outputs using our method (with TensoRF[1]) for an ablation study on LLFF
dataset[4]. We show the differences (×10) for the full method, our method without patch loss, and our method without frequency do-
main. The closer it is to white, the bigger the difference between the ground truth and the image. Our proposed WateRF can achieve a good
balance between the rendering quality and bit accuracy. We show the results on 16 bits.



Figure 5. Reconstruction qualities of various rendering outputs using our method (with TensoRF[1]) for an ablation study on blender
dataset[5]. We show the differences (×10) for the full method, our method without patch loss, and our method without frequency domain.
The closer it is to white, the bigger the difference between the ground truth and the image. Our proposed WateRF can achieve a good
balance between the rendering quality and bit accuracy. We show the results on 16 bits.



Figure 6. Reconstruction qualities of various rendering outputs using our method (with Vanilla NeRF[5]) for an ablation study on LLFF
dataset[4]. We show the differences (×10) for the full method, our method without patch loss, and our method without frequency domain.
The closer it is to white, the bigger the difference between ground truth and the image. Our proposed WateRF can achieve a good balance
between the rendering quality and bit accuracy. We show the results on 16 bits.



Figure 7. Reconstruction qualities of various rendering outputs using our method (with Vanilla NeRF[5]) for an ablation study on blender
dataset[5]. We show the differences (×10) for the full method, our method without patch loss, and our method without frequency domain.
The closer it is to white, the bigger the difference between the ground truth and the image. Our proposed WateRF can achieve a good
balance between the rendering quality and bit accuracy. We show the results on 16 bits.
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