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Supplementary Material

1. Survival prediction

Following the notation introduced previously, we aim to
predict patient survival from the multimodal embedding
Kaw € R, Consistently with previous work [14], we de-
fine the patient’s survival state by: (1) censorship status c,
where ¢ = 0 represents an observed patient death and c = 1
corresponds to the patient’s last known follow-up, and (2)
a time-to-event t;, which corresponds to the time between
the patient’s diagnostic and observed death if ¢ = 0, or
the last follow-up if ¢ = 1. Instead of directly predicting
the observed time of event ¢, we approximate it by defin-
ing non-overlapping time intervals (t;_1,t;), j € [1,...,n]
based on the quartiles of survival time Values and denoted
as y;. The problem simplifies to classification with cen-
sorship information, where each patient is now defined by
(Xaw; Yj,¢). We build a classifier such that each output
logit predicted by the network ¢; correspond to a time in-
terval. From there, we define the discrete hazard function
Jhazard (Y5 |Xaw) = S(;) where S is the sigmoid activation.
Intuitively, fhazara(y;|Xa«) represents the probability that
the patient dies during time interval (¢;_1, ;). Additionally,
we define the discrete survival function fsuw(yj|xAn) =

f;:l (1 = fhazara(Yk|[Xaw)) that represents the probability
that the patient survives up to time interval (¢,_1,%;). These
enable us to define the negative log-likelihood (NLL) sur-
vival loss [14], which generalizes NLL to data with censor-
ship. Formally, we express it as:
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where Np is the number of samples in the dataset. Intu-
itively, Eq. 2 enforces a high survival probability for pa-
tients who remain alive after the final follow-up, Eq. 3 en-
forces that patients that died have high survival up to the
time stamp where death was observed, and Eq. 4 ensures
that the correct timestamp is predicted for patients for whom
death is observed. A thorough mathematical description can
be found in [14].

Finally, by taking the negative of the sum of all logits,
we can define a patient-level risk used to identify different
risk groups and stratify patients.

2. Implementation
2.1. Model training

The code was implemented using Python 3.9, models were
implemented in PyTorch and the interpretability was based
on Captum [7]. SURVPATH, baselines and ablations were
optimized using the RAdam optimizer [8], a batch size
of 1, a learning rate of 5 x 10™%, and 102 weight de-
cay. The patch encoder yields 768-dimensional embeddings
(CTransPath output) that are projected to d = 256, the token
dimension. The transcriptomics encoder is composed of 2-
layer feed-forward networks with alpha dropout [6] to yield
pathway tokens. The Transformer is implemented with a
single head and layer, without class (CLS) token. The trans-
former is followed by a layernorm, a feed-forward layer,
and a 2-layer classification head. All model training was
done using a single NVIDIA RTX 3090Ti.

2.2. Metrics

The models are evaluated using (1) the concordance index
(c-index, higher is better), which measures the proportion
of all possible pairs of observations where the model’s pre-
dicted values correctly predict the ordering of the actual
survival (ranges from 0.5 (random prediction) to 1.0 (per-
fect prediction)), and (2) Kaplan-Meier (KM) curves that
enable visualizing the probability of survival of patients of
different risk groups over a certain period of time. We ap-
ply the logrank statistical significance test to determine if
the separation between low and high-risk groups is statisti-
cally significant (p-value < 0.05).

3. Additional interpretability

A high-level depiction of the proposed multi-level inter-
pretability framework is shown in Fig. 1.

To complement the interpretability analysis presented in
the main paper, we further analyze a low and high risk case
from BLCA (see Fig 2). The histology interpretation indi-
cates that the presence of healthy bladder muscle reduces
risk, and pleomorphic tumor cells with foamy cytoplasm
contribute to augmenting risk. The majority of important
pathways relate to cell cycle control (e.g., G2M checkpoint,
SCF S TrCP degradation of em1), metabolism (e.g., fatty
acid metabolism), and immune-related function (allograft
rejection and IL2 STATS signaling). The contributions of
pathways to overall risk are also in line with previous lit-
erature. For example, previous pathway expression analy-
ses have found G2M checkpoint and immune-related path-



Interpret
Histolong """" Q Patch-level

WSI
Ty Pathway-to-patch
Omics interactions
o | Interpret Y
\'\ Cross-modal
N Patch-to-pathway
Risk interactions

Interpret 7 .
Transcriptomics -

Figure 1. Multi-level interpretability framework. From the
multimodal input consisting of a WSI and transcriptomic measure-
ments, and the predicted risk, we can attribute risk at slide-, gene-
and biological pathway-level. The framework also enables study-
ing pathway-to-patch interactions and patch-to-pathway interac-
tions for unravelling correspondences between the two modalities.
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ways to be significant in predicting bladder cancer progno-
sis [5]. Qualitative assessments of the cross-modal interac-
tions found by SURVPATH are scientifically plausible. For
example, the allograft rejection pathway consists of mul-
tiple genes that are activated in immune response to allo-
grafts and cancer. In the low-risk case, allograft rejection
highly attends to tumor-infiltrating lymphocytes and col-
lections of lymphocytes within and near the muscular wall
of the bladder. In the higher-risk case, this pathway again
attends to collections of inflammatory cells that are inter-
spersed within the muscular wall. The SCF S TrCP degra-
dation of em1 pathway is important in controlling cell divi-
sion by mitosis. In the low-risk case, this pathway attends
to uninvolved bladder muscle, whereas in the high-risk case,
the same pathway attends to tumor cells invading the blad-
der muscle. While there is an overlap between pathways
for low and high-risk cases, SURVPATH also identifies path-
ways present in only one case. For example, in the low-risk
case, SURVPATH finds the protein secretion pathway to be
highly attending to tumor cells and not the healthy blad-
der muscle cells. In both cases, the G2M checkpoint path-
way (critical for the healthy progress of the cell cycle) is
found to be important. In the high-risk case, we see this
pathway contributing largely to increasing risk. Interest-
ingly, we also find that this pathway attends to large areas
of necrosis, which is reasonable given that aberrations in
cell cycle regulation lead to cell death.

4. Additional results

10x results: We also present an analysis of SURVPATH
and baselines (Tab. 1), and ablations (Tab. 2) at 10x mag-
nification. Trends from the 20x analysis remain in that
(1) SURVPATH achieves overall best performance, (2) tran-
scriptomic baselines remain strong competitors, and (3)
multimodal models provide better overall performance. In-
terestingly, SURVPATH at 10x and 20X provide the same
performance (62.9% over the five cohorts).

Kaplan Meier analysis: Fig. 3 shows Kaplan-Meier
survival curves of predicted high-risk and low-risk groups
at 20x. All patients with a risk higher than the median of
the entire cohort are assigned as high risk (red), and pa-
tients with a risk lower than the median are assigned low
risk (blue). For all five diseases, SURVPATH highlights sta-
tistically better discrimination of the two risk groups com-
pared to the best histology baseline (TransMIL), transcrip-
tomics baseline (MLP), and multimodal baseline (MCAT).
We believe that SURVPATH can better discriminate between
risk groups because a simplified early fusion mechanism al-
lows it to find better correlations between transcriptomics
and histology with respect to the patient’s risk.

Comparisons with clinical covariates: Clinically,
prognostication can be based on patient information such
as age, and cancer progression assessment, such as cancer
grade. We use a Cox proportional hazards model to predict
survival from clinical covariates (Age, Sex, Grade) individ-
ually and in combination. We find the SURVPATH outper-
forms survival prediction from all clinical covariates (Table
3).

Modality attributions: By summing Integrated Gradi-
ent (IG) values pre-co-attention per modality, we can derive
modality attribution scores (Table 4). We find that histology
contributed 77.2% across cohorts, highlighting the need for
multi-modality in prognostication.
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Figure 2. Multi-level interpretability visualization in a bladder cancer patient. Top: Low-risk patient. Bottom: High-risk patient.
Genes and pathways in red increase risk, and those in blue decrease risk. Heatmap colors indicate importance, with red indicating high
importance and blue indicating low importance. The pathways and morphologies identified as important in these cases generally correspond
well with patterns that have been previously described in bladder urothelial carcinoma (e.g., the G2M checkpoint).

Table 1. Results of SURVPATH and baselines in predicting disease-specific patient survival measured with c-Index (at 10x). Best perfor-
mance in bold, second best underlined. Cat refers to concatenation, KP refers to Kronecker product. All omics and multimodal baselines
were trained with the Reactome and Hallmark pathway sets. The omics baselines are carried forward from the 20x experiments.

Model/Study | BRCA (1) BLCA (1) COADREAD (1)  HNSC (1) STAD (1)  Overall (1)
_ ABMIL [4] 0.604+0.110  0.518+0.078  0.6524+0.192  0.572+0.070  0.522+0.136  0.574
2 AMISL[13] 0.50040.000  0.500+0.000  0.506+0.012  0.498+0.050  0.50040.000  0.501
TransMIL [10] 0.52740.157  0.541+£0.043  0.62840.193  0.557+0.056  0.516+0.080  0.554
% MLP 0.61140.080  0.627+0.062  0.625+0.060  0.548+0.045 0.586+0.098  0.599
‘E SNN [6] 0.52840.094  0.584+0.113  0.52140.109  0.550+0.065 0.565+0.030  0.550
O S-MLP [3] 0.51240.028  0.595+0.114  0.5814+0.066  0.542+0.052  0.5154+0.081  0.549
ABMIL (Cat) [9] 0.623+0.066  0.61940.094  0.622+0.165  0.549+£0.063 0.547+0.111  0.592
ABMIL (KP) [2] 0.52940.099  0.592+£0.086  0.6404+0.183  0.596+0.039  0.526+0.107  0.577
E AMISL (Cap) [13] | 0.508+0.131  0.543+0.069  0.620£0.110  0.539£0.051  0.583+0.104  0.559
£ AMISL (KP) [13] | 0.551£0.122  0.5004£0.068  0.518+0.151  0.523+£0.063  0.565+0.062  0.531
Z TransMIL (Cat) [10] | 0.539£0.072  0.598+0.043  0.632+£0.200  0.537+0.065  0.547+0.094  0.571
S TransMIL (KP) [10] | 0.538+0.054  0.603+0.043  0.686+0.195  0.521+0.111  0.459+0.170  0.561
MOTCat [12] 0.61240.156  0.614+0.079  0.5694+0.191  0.592+0.080  0.586+0.056  0.595
MCAT [1] 0.47340.123  0.545+0.070  0.48040.243  0.494+0.072  0.433+0.064  0.485
SURVPATH (Ours) | 0.640+0.093 0.628+0.073  0.675+0.175  0.605+0.068 0.598+0.031  0.629




Table 2. Studying design choices for tokenization (top) and fusion (bottom) in SURVPATHat 10x magnification. Top: Single refers to no
tokenization, using tabular transcriptomics features as a single token. Families refers to the set of six gene families in MutSigDB, as used
in [1]. React.+Hallmarks refers to the main SURVPATH model reported in Table 1. Bottom: Ap_,p and Ap., refers to pathway-to-
pathway, pathway-to-patch, and patch-to-pathway interactions, which is the main SURVPATH model reported in Table 1. A refers to using
Nystrom attention to approximate A.

Model/Study | BRCA (1) BLCA (1)  COADREAD (1)  HNSC (1) STAD (1)  Overall (1)
3 Single 0.617£0.147  0.599+0.077 0.533£0.07 0.544£0.077  0.524£0.117 0.563
] Families 0.534£0.156  0.58840.060 0.686+0.156 0.543+£0.077  0.457£0.077 0.562
5 Hallmarks 0.609£0.087  0.63340.090 0.659+0.117 0.601£0.031  0.58040.052 0.616
é Reactome 0.665+0.086 0.634+0.077 0.626+0.157 0.611+0.067 0.603+0.033 0.628
React.+Hallmarks 0.640+0.093  0.62840.073 0.675+0.175 0.605+0.068  0.598+0.081 0.629
Ap_p, Ap_y 0.589+0.077  0.57040.099 0.594+0.124 0.568+0.067  0.546+0.135 0.573
.§ Ap_p, Ay _p 0.573+£0.085  0.577+0.118 0.531+0.221 0.566+0.064  0.52140.056 0.554
é ép_,p, Ayp, Apy | 0.640£0.093  0.62840.073 0.675+0.175 0.605+0.068  0.59840.081 0.629
A[11] 0.495£0.177  0.59140.068 0.600£0.190 0.508+£0.066  0.605+0.075 0.560
BRCA BLCA COADREAD HNSC STAD
Number of patients surviving Number of patients surviving Number of patients surviving Number of patients surviving Number of patients surviving
Highrisk 434 379 315 270 202 180 89 86 47 47 148 124 110 97 97 196 123 123 123 123 159 112 92 92 92
Lowrisk 434 385 341 341 341 179 118 103 103 103 148 131 104 104 104 196 131 96 96 9 159 106 88 79 79
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Figure 3. Kaplan Meier curves of SURVPATH, compared against histology, transcriptomics, and multimodal baselines. High (red) and low-
risk (blue) groups are identified by using the median predicted risk as cut-off. Logrank test was used to determine statistical significance
(a = 0.05).



Table 3. Survival prediction results of SURVPATH compared with clinical covariates. Best performance in bold, second best underlined.
Predictions using clinical covariates are done using Cox proportional hazards model on the same 5-fold cross-validation splits as

SURVPATH.
Model/Study BRCA (1) BLCA (1)  COADREAD ()  HNSC (1) STAD (1)  Overall (1)
Age 0.496+0.086  0.578+0.056  0.357+0.161  0.517+£0.073 0.4994+0.055  0.489
Sex 0.490£0.011  0.489+£0.028  0.5424+0.070  0.486+0.035 0.5294+0.069  0.507
Grade 0.5974+0.078  0.51540.018 N/A 0.547+0.035  0.552+0.055  0.553
Age + Sex + Grade | 0.563£0.055  0.570+£0.033  0.65540.119  0.512+0.093 0.592+0.044  0.578
SURVPATH (Ours) | 0.65540.080 0.625+0.056  0.673+0.170  0.600+£0.061 0.592+0.047  0.629

Table 4. Modality attribution percentages. The sum of Integrated Gradients attribution over all modality-specific tokens before co-attention.

Scores reported on validation fold with the highest c-index.

Modality/Study ‘ BRCA BLCA COADREAD HNSC STAD
WSI 0.621£0.251 0.511+£0.222  0.971+£0.067 0.9214+0.060 0.84940.221
Omics 0.379£0.251 0.489+0.222  0.029+0.067 0.0794+0.060 0.15140.221
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