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A. Synthetic Experiment Details

In this section, we discuss the details of the experiment de-
scribed in Section 3.2. As the reference distribution, we
use an isotropic Gaussian distribution centered at the ori-
gin with a covariance matrix σ2I2, where I2 is the 2 × 2
identity matrix. The second distribution consists of four
different equally-likely Gaussians, centered at the coordi-
nates (λ, 0), (0, λ), (−λ, 0), (0,−λ), and each with the co-
variance matrix τ2λI2. In Table 2, we show the distribution
visualizations (first row), and the behavior of different dis-
tance metrics (remaining rows) with increasing values of λ.
As λ increases, τλ is adjusted as described below so that the
overall covariance matrix of the mixture-of-Gaussians dis-
tribution remains equal to σ2I2. Trivially, the mean of the
mixture-of-Gaussians is the origin. Therefore, as λ varies,
both the mean and the covariance matrix of the mixture-
of-Gaussians distribution remain equal to the reference dis-
tribution. Therefore, both FD and FD∞ estimated using
Eq. (2) remain zero as λ increases. This is obviously mis-
leading as the mixture-of-Gaussians distribution gets fur-
ther and further away from the reference as λ increases.
This error is a direct consequence of the incorrect normality
assumption for the mixture-of-Gaussians distribution.

To see the relationship between τλ and λ that keeps the
overall covariance matrix equal to σ2I2, consider a mix-
ture distribution consisting of 1-D PDFs f1, f2, . . . , fn with
weights p1, p2, . . . , pn, where each pi > 0 and

∑
i pi = 1.

The PDF of the mixture distribution is then given by f(x) =∑
i pifi(x). It follows from the definition of the expected

value that, µ(k) =
∑
i piµ

(k)
i , where µ(k) and µ(k)

i are the
kth raw moment of f and fi, respectively. Recall also that
variance is µ(2) − {µ(1)}2. By applying the above result
to x and y coordinates individually, we see that the over-
all covariance matrix of the above mixture of four Gaus-
sians, when they are away from the mean by λ, is given by
(τ2λ +λ2/2)I2. Setting τ2λ = σ2−λ2/2 therefore keeps the
overall covariance matrix at σ2I2 as we vary λ.

B. Multivariate Normality Tests

Fréchet Inception Distance (FID) hinges on the multivariate
normality assumption. Since there is no canonical test, we
show that the Inception features for a typical image dataset
like COCO 30K do not satisfy this assumption using three
different widely-accepted statistical tests: Mardia’s skew-
ness test [4], Mardia’s kurtosis test [4] and Henze-Zirkler
test [3].

The null hypothesis for all of the tests is that the sample
is drawn from a multivariate normal distribution. Different
tests use different statistics as described below.

Mardia’s Skewness Test

For a random sample of x1,x2, . . . ,xn ∈ Rd, a measure of
multivariate skewness is,

A =
1

6n

n∑
i=1

n∑
j=1

[
(xi − x̄)T Σ̂−1(xj − x̄)

]3
. (A)

Where Σ̂ is the biased sample covariance matrix, and x̄ is
the sample mean.

Mardia [4] showed that under the null hypothesis that xis
are multivariate normally distributed, the statistic A will be
asymptotically chi-squared distributed with d(d + 1)(d +
2)/6 degrees of freedom. Therefore, the normality of a
given sample can be tested by checking how extreme the
calculated A-statistic is under this assumption. For Incep-
tion embeddings computed on the COCO 30K dataset, this
test rejects the normality assumption with a p-value of 0.0,
up to machine precision.
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Mardia’s Kurtosis Test

For a random sample of x1,x2, . . . ,xn ∈ Rd, a measure of
multivariate kurtosis is,

B =

√
n

8d(d+ 2)

{
1

n

n∑
i=1

[
(xi − x̄)T Σ̂−1(xi − x̄)

]2
− d(d+ 2)

}
. (B)

It was shown in [4] that, under the null hypothesis that
xis are multivariate normally distributed, the statisticB will
be asymptotically standard normally distributed. For Incep-
tion embeddings computed on the COCO 30K dataset, this
test also rejects the normality assumption with a p-value
of 0.0, To intuitively understand the confidence of the out-
come: this Mardia’s test places the test statistics 19, 023
standard deviations away from the mean in a normal dis-
tribution. This indicates the test’s extreme confidence in
rejecting the normality of Inception embeddings.

Henze-Zirkler Test

The Henze-Zirkler test [3] is based on a functional that mea-
sures the distance between two distributions and has the
property that, when one of the distributions is standard mul-
tivariate normal, it is zero if and only if the second distri-
bution is also standard multivariate normal. The Henze-
Zirkler test has been shown to be affine invariant and to have
better power performance compared to alternative multi-
variate normal tests.

The Henze-Zirkler test’s p-value for Inception embed-
dings of COCO 30K is again 0.0 up to the machine preci-
sion. Therefore, the Henze-Zirkler test also rejects the nor-
mal assumption on Inception embeddings with overwhelm-
ingly high confidence.

C. CMMD Kernel
Here we explain in more detail why we prefer the Gaussian
RBF kernel, rather than the third-degree polynomial ker-
nel used in KID. The Gaussian kernel is characteristic and
therefore yields a metric [1, 2], whereas, the polynomial
kernel is not characteristic and does not a yield a metric. To
explain this intuitively, the kernel in KID captures moments
only up to 3 degrees. It therefore fails to distinguish be-
tween distributions that differ in higher orders (just like FD
in Table 2 fails to capture differences beyond 2 degrees).
The Gaussian RBF kernel has an infinite-dimensional fea-
ture map and is therefore able to capture infinitely-high or-
der interactions. This can be clarified with the Taylor series
expansion exp(−‖x − y‖2) = exp(−2)

∑∞
i=0

2i

i!

(
xTy

)i
(CLIP embeddings are l2-normalized): the Gaussian kernel
is an infinite series of all polynomial kernels. It is therefore
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Figure A. CMMD’s behavior under different distortions to images.

much richer than the 3rd degree polynomial. It also has
no additional computational overhead over the polynomial
kernel.

D. Behavior of CMMD under Image Distor-
tions

Figure A shows that CMMD increases with increased levels
of image distortions such as Gaussian blue, Gaussian noise
and JPEG compression artifacts. This further confirms that
CMMD accurate measures the image quality.
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