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1. Appendix
1.1. Implementation Details

Training Procedure. Our implementation builds upon
Voxurf [17], excluding its dual-color network feature. We
adhere to the coarse and fine processing stages described
in Voxurf before initiating our LTS learning-based training
strategy. Additionally, we compute ray colors using alpha
masks to filter out points in empty space, aligning with prac-
tices in previous studies [2, 6, 17]. The LTS learning train-
ing procedure with progressive refinement approach is:
1. Initialize ray groups: Uncertain rays RU

0 = R and cer-
tain rays RC

0 = ∅.
2. Form mini-batches using stratified sampling within each

ray group.
3. Calculate the rendering loss, Lrender.
4. For rays in the mini-batch, uniformly sample 100 points

to evaluate the LTS loss, Llts.
5. Compute the surface normal at sampled points.
6. For LE

o (x, ωo), sample an additional viewing direction
on the upper hemisphere at these points.

7. For L̂E
o (x, ωo), sample 256 rays on the upper hemi-

sphere at these points to compute incident radiance.
8. Calculate Llts, considering the group membership of

each point.
9. Update network parameters.

10. Adjust ray groups at specified training intervals.
11. Repeat steps 2 through 10 until training ends.

Discretization. Following NeuS [16], we approximate ray
color computation using N discrete points sampled along
the ray, denoted as {xi = c− tiωo|i = 1, ..., N, ti < ti+1}:

Ĉ(r) =

N∑
i=1

TiαiLo(xi, ωo), (1)

αi = max

(
Φs(f(xi))− Φs(f(xi+1))

Φs(f(xi))
, 0

)
, (2)

Ti =

i−1∏
j=1

(1− αj). (3)

α is the discrete equivalent of the SDF-based opacity, ρ.
For reflections in L̂o(x, ω), we employ Monte Carlo

sampling, uniformly sampling directions ωi around the nor-
mal n at point x on the upper hemisphere. While the current
implementation of ESR-NeRF doesn’t include importance
sampling for incident rays, incorporating it in future work
for variance reduction may enhance overall performance.

L̂o(x, ωo) = E(x) +
1

M

M∑
j=1

(
Li(x, ωj)R(x, ωo, ωj)

1
2π

)
. (4)

Simplified Diseny BRDF. We adopt the simplified Dis-
ney principled BRDF function [15], parameterized by base
color b, metallic m, and roughness r.

R(x, ωo, ωi) =
D(h, n, r)F (ωo, h, b,m)G(ωo, ωi, h, r)

4(n · ωo)

+ (n · ωi) (1−m)

(
b

π

)
,

(5)

The half vector h is defined as h = ωo+ωi

∥ωo+ωi∥2
. Following

NeILF++ [18], the normal distribution function D is ap-
proximated using Spherical Gaussian:

D(h, n, r) =
1

πr4
exp(

2

r4
(h · n− 1)), (6)

The Fresnel term F is calculated as follows:

F (ωo, h, b,m) = F0 + (1− F0)(1− (ωo · h)5),
where F0 = 0.04(1−m) + bm,

(7)

The geometry term G adopts the GGX function [1].

G(ωo, ωi, n, r) =
(n · ωo)(n · ωi)

((n · ωo)(1− k) + k) ((n · ωi)(1− k) + k)
,

where k =
r2

2
.

(8)
For simplicity, our BRDF model incorporates the Lambert
cosine term (n · ωi).

Gamma Correction. To ensure HDR linear color space for
outgoing radiance, we apply the standard gamma correction
as defined by IEC [4] to ray colors before calculating the



rendering loss. The gamma-corrected sRGB color, given a
linear color Clinear, is computed as follows:

τ(Clinear) =

{
12.92Clinear if Clinear ≤ 0.0031308,

1.055C
1/2.4
linear − 0.055 if Clinear > 0.0031308.

(9)

RGB to HSV. For scene editing tasks, we utilize the HSV
color model [11]. The hue (H ∈ [0, 1]), saturation (S ∈
[0, 1]), and value (V ∈ R+) are calculated using the follow-
ing method:

M = max(R,G,B),

m = min(R,G,B),

C = M −m.

(10)

H = (H ′/6.0) mod 1.0,

H ′ =


0 if C = 0,
G−B
C

if M = R,
B−R
C

+ 2 if M = G,
R−G
C

+ 4 if M = B.

(11)

S =

{
0 if V = 0,
C
V

otherwise,
(12)

V = max(R,G,B) (13)

HSV to RGB. Once the color is replaced and intensity is
adjusted in the HSV space, the conversion back to RGB is
performed as:

m = V − C,

H ′ = H × 6.0,

C = S × V,

X = C × (1− |H ′ mod 2− 1|),

(R′, G′, B′) =



(C,X, 0) if 0 ≤ H ′ < 1,

(X,C, 0) if 1 ≤ H ′ < 2,

(0, C,X) if 2 ≤ H ′ < 3,

(0, X,C) if 3 ≤ H ′ < 4,

(X, 0, C) if 4 ≤ H ′ < 5,

(C, 0, X) if 5 ≤ H ′ < 6.

(14)

(R,G,B) = (R′ +m,G′ +m,B′ +m). (15)

1.2. Dataset Details

Dataset Construction. This section outlines the dataset
used for training and evaluation. Each scene in our dataset
comprises 200 training images, with an equal split between
two lighting conditions: “on” and “off”. Emission masks
are utilized as ground truth for emissive source identifica-
tion, while EXR files with linear pixel values assess the ac-
curacy of the reconstructed strength of emission and reflec-
tion. All data are rendered using the Cycles path tracing in

Blender [3], with settings that could artificially alter scene
illumination are disabled, such as incdient light clamping
and the Filmic transform. For scene editing under novel
lighting conditions, we introduce a variety of test scenar-
ios, including intensity editing, color editing, and combined
intensity and color editing, each with 50 images. We de-
rive these scenarios from 25 unique camera positions from
the novel view evaluation dataset, each under two differ-
ent lighting conditions, Intensity adjustments are made rel-
ative to the original scene’s emissive source strength, with
“0” indicating “light off” and “1” matching the “light on”
intensity. We test intensity adjustments at half (0.5) and
double (2.0) the original levels. In scenes allowing individ-
ual source adjustments, we include an additional intensity
condition where lights are selectively turned off (0.0). For
color editing, we select six colors—red, green, blue, cyan,
magenta, and yellow—to demonstrate the effects of various
light source colors on scene illumination.

Scene Characteristics. Our scenes are meticulously
crafted using assets from Blendswap and cgtrader, with li-
censing details and the count of emissive sources detailed
in Tab. 1. Below, we describe the unique aspects of each
scene.
• LEGO: This scene showcases three emissive sources, all

starting with the same color and intensity. The intricate
designs of the LEGO bricks create complex reflection ef-
fects. The emissive sources in these scenes are tested for
both collective and individual adjustments.

(a) Lego (white) (b) Lego (vivid)

• Gift: Featuring a gift box, a toy, and numerous small
bulbs, this scene presents a challenge with its multitude
of tiny light bulbs and extensive reflection areas.

(a) Gift (white) (b) Gift (vivid)



Scene Name Num Lights License

Lego 3 By Heinzelnisse (CC-BY-NC): https://www.blendswap.com/blend/11490

Gift 29
By juan215 (Royalty Free):
https://www.cgtrader.com/free-3d-models/household/household-tools/gift-box-aeb8f01e-
929f-4041-9117-bcea21f3c813
By MiriamAHoyt (CC-0): https://blendswap.com/blend/21434

Book 1
By lakerice (CC-0): https://blendswap.com/blend/22197
By 3dfiles (CC-BY): https://blendswap.com/blend/28034
By bloknayrb (CC-BY): https://www.blendswap.com/blend/26172

Cube 1 By 4NDR31JK (CC-BY): https://www.blendswap.com/blend/30149
By sriniwasjha (CC-BY): https://blendswap.com/blend/18409

Billboard 6 By M0h4wkAD3 (CC-BY-NC-SA): https://blendswap.com/blend/27481

Balls 1 By elbrujodelatribu (CC-0): https://blendswap.com/blend/10120

Table 1. Number of emissive sources and licenses of objects used in scenes.

• Book: The Book scene features a single large light source
consisting of a lamp, a book, and a pencil. The emphasis
here is on identifying and restoring the very large emis-
sive source.

(a) Book (white) (b) Book (vivid)

• Cube: Comprising a tablet PC and a cube, this scene is
marked by its sophisticated reflection effects, especially
on the cube surfaces which varying albedo.

(a) Cube (white) (b) Cube (vivid)

• Billboard: This scene includes two billboards, each
equipped with three emissive sources, summing up to
six sources. The lights are positioned to shine down-
wards from the billboards’ tops. We adjust the emissive
sources collectively and individually. Individual adjust-
ments are performed for three light groups by pairing the
light sources of the front and back billboards.

• Balls: This is the material balls scene in NeRF, with the
modification of the red ball as an emissive source.

(a) Billboard (white) (b) Billboard (vivid)

(a) Balls (white) (b) Balls (vivid)

1.3. Baseline Implementation

In our evaluation, we compared against two leading re-
lighting methods, TensoIR [6] and NeILF++ [18], known
for their ability to operate without prior knowledge of scene
components Additionally, we made Twins, a method fo-
cused on emissive source reconstruction without relying
on inverse rendering techniques. For an in-depth analysis
of scene editing capabilities, we include PaletteNeRF [7],
which achieves scene modification through re-colorization,
and NeRF-W [8], which adjusts scene illumination by in-
terpolating between learned latent vectors. For surface re-
construction evaluations on the DTU dataset, we selected
state-of-the-art methods such as Voxurf [17] and NeuS [16],
alongside Neural-PBIR [14], which offers a joint recon-
struction of surfaces, materials, and environment maps. We
utilized the official implementations provided by the au-

https://www.blendswap.com/blend/11490
https://www.cgtrader.com/free-3d-models/household/household-tools/gift-box-aeb8f01e-929f-4041-9117-bcea21f3c813
https://www.cgtrader.com/free-3d-models/household/household-tools/gift-box-aeb8f01e-929f-4041-9117-bcea21f3c813
https://blendswap.com/blend/21434
https://blendswap.com/blend/22197
https://blendswap.com/blend/28034
https://www.blendswap.com/blend/26172
https://www.blendswap.com/blend/30149
https://blendswap.com/blend/18409
https://blendswap.com/blend/27481
https://blendswap.com/blend/10120
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Figure 7. Decomposed scene components on real scenes

thors for all baselines, with the exception of NeRF-W. We
used the official implementation codes provided by the au-
thors for all baseline methods except for Twins and NeRF-
W. Twins employs a dual-model strategy for ’light-on’ and
’light-off’ conditions, using radiance differences for emis-
sive source identification and scene illumination editing.
NeRF-W leverages two latent embeddings for similar pur-
poses, focusing on intensity adjustments. Both Twins and
NeRF-W are based on the Voxurf architecture to ensure a
fair comparison with ESR-NeRF. For NeILF++, we omit-
ted the use of prior scene information to align with methods
that do not use geometry hints like object meshes or ori-
ented point clouds. Neural-PBIR was excluded from emis-
sive source reconstruction experiments as the code is not
publicly available yet. Baseline performance data on the
DTU dataset are borrowed directly from the Voxurf, NeuS,
and Neural-PBIR papers.

1.4. Real Scene

We showcase the effectiveness of ESR-NeRF in identify-
ing emissive sources in real-world scenes. Camera poses
are estimated using COLMAP [10]. We use commercial
smart light bulbs from Philips, which offer control over light
colors. Since precise control over the color of the smart
bulbs is infeasible, we provide qualitative results for emis-
sive source identification and scene editing in real scenes.
Fig. 7 presents the decomposed scene components, such
as normal, base color, roughness, metallic, and the envi-

ronment map. In Fig. 8, our method successfully identi-
fies emissive sources, enabling scene illumination adjust-
ments. Fig. 9 presents qualitative results for comparison
with ground truth data. Although our model successfully
identifies emissive sources, it encounters difficulties with
complex reflections inside light bulbs, as indicated by the
bright spots at the bulb centers in the ground truth edit im-
ages. Despite these challenges, ESR-NeRF stands out as
the first NeRF-based inverse rendering method to address
the reconstruction of emissive sources, enabling scene il-
lumination modifications through the identification of light
sources within a scene.

1.5. Reconstructed Scene Components

We present the reconstructed components of our synthetic
scenes, including emissions, surface normals, and BRDF, in
Fig. 13 and 14. We also provide the comparison of the re-
constructed emission and BRDF performance among Ten-
soIR, NeILF++, and ESR-NeRF in Fig. 10 and 11 for real
scenes and Fig. 15 to 19 for synthetic scenes. TensoIR
and NeILF++ encounter difficulties, as does ESR-NeRF,
in capturing precise roughness, often resulting in shadows
being baked into the albedo. This issue is exacerbated by
a relatively dark environment map, in contrast to previous
works, and is compounded by strong emissions and shad-
ows. Nevertheless, while BRDF results are comparable,
ESR-NeRF distinguishes itself in its primary goal: the accu-
rate reconstruction of emissive sources We also provide the
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Figure 8. Identified emissive sources and edited results on real scenes.

reconstructed scene components on DTU dataset in Fig. 20
and 21.

1.6. Illumination Decomposition

We present additional results of decomposed illumination
in Fig. 22. These visualizations offer insights into the ef-
fectiveness of ESR-NeRF in factorizing the scene illumi-
nation. The off image, for instance, is generated by merg-
ing direct and indirect illumination from the environment
map, as shown in the first row. The second row illustrates
the decomposition of emission effects, including both the
emission and its reflection. Light-on images are created by
adding the light-off and the emission effects images.

1.7. Scene Editing w&w/o Radiance Fine-tuning

Fig. 23 and 24 present additional scene editing examples,
illustrating various scenarios including intensity and color
edits, as well as their combination. As discussed in the con-
clusion section of the main paper, scene illumination can be
adjusted without fine-tuning radiance fields, using alterna-

tive methods. Results on the right side of Fig. 23 to 24 are
rendered by calculating only direct illumination from emis-
sive sources for re-lighting, a technique commonly used
in prior research [6, 19, 20], bypassing the fine-tuning of
trained networks. This approach is particularly effective
for scenes with vividly colored emissive sources, as shown
in Fig. 25. To evaluate the effectiveness of direct illumi-
nation in scene editing, we provide quantitative results for
each scenario in Tab. 4 and 5. Quantitative comparisons for
scenes with vivid-colored emissive sources are detailed in
Tab. 6 and 7.

1.8. Analysis of Learnable Tone-mapper

We eliminate the constraint on the range of radiance values
to address the unbounded nature of emissive sources and
their reflections. Instead of the commonly used sigmoid ac-
tivation function in NeRF-based methods [2, 9, 12, 20, 21]
for radiance prediction, we employ the softplus activation,
extending the radiance range from [0, 1] to [0,∞].

However, this modification may lead to inaccurate sur-
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Figure 9. Qualitative results comparison with ground truth obtained using commercial smart bulbs.
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Figure 10. Comparison of identified emissive sources and decomposed BRDF.

face reconstructions, as highlighted in the main paper.
Fig. 28 shows instances where surfaces become semi-
transparen, lose structural details, and the rendered images
significantly deviate from the ground truth, making the ac-
curate reconstruction of emissive sources infeasible.

To address this issue, we introduce a learnable tone-

mapper mθ, taking positionally encoded HDR linear color
as input and produce LDR sRGB colors outputs. Fig. 26
reveals that this tone-mapper helps in obtaining accu-
rate surface normals and rendering photo-realistic images.
Nonetheless, a trade-off exists between the quality of sur-
face normals and rendered images, when using the learnable
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Figure 11. Comparison of identified emissive sources and decomposed BRDF.

tone-mapper. For example, a low λτ value, which indicates
a heavier reliance on the tone-mapper in the rendering loss,
may improve surface details but linear color values devi-
ate significantly from expectations. This discrepancy oc-
curs as the correlation between predicted linear colors and
actual image pixel colors weakens with lower λτ values.
Conversely, a higher λτ compromises surface reconstruc-
tion quality. Thus, setting λτ requires careful consideration
of the balance between surface detail and color accuracy.

Interestingly, the choice of λτ also impacts the recon-
struction of emissive sources in real scenes. A high λτ

tends to result in lower intensity of reconstructed emissive
sources. Re-lighting experiments in Fig. 12 show illumina-
tion effects confined to a narrow area compared to ground
truth data. We suspect the camera may edit images for
low contrast and apply color grading, particularly in HDR
scenes. We used the Fuji 100s camera. A high λτ in the ren-
dering loss could be problematic, as it aims to align gamma-
corrected linear values with manipulated colors. Based on
this insight, we slightly reduced λτ by 0.1 to enhance emis-
sion intensity (1.4 vs. 37.2) and expand reflections in re-
lighting scenarios.

1.9. Near-zero IoU Results of Baselines

State-of-the-art re-lighting methods struggle with ambigu-
ities surrounding emissive sources, often failing to accu-

High λτ Low λτ Pseudo G.T.

Figure 12. Scene edit results on jobs scene. Lower λτ results in
stronger emission. The middle image is rendered with direct light
for proving enhanced emission strength.

rately identify them. These methods typically cannot differ-
entiate between reflections and emissions, leading to most
regions being misclassified as emissive sources. This chal-
lenge is reflected in Tab. 3, where baseline methods exhibit
near-zero IoU performance across various scenes. Despite
extensive trinary grid searches with an interval of 0.01 for
thresholding values to report the peak performance of base-
lines, ESR-NeRF consistently outperforms them. Addition-
ally, our method’s efficacy in classifying rays into the un-
certain group for emissive source identification highlights
its superiority in this task. This is further supported by ad-
ditional results obtained using thresholding techniques ap-
plied to the baselines.

1.10. Failure Cases in Scene Editing

We also present failure cases in scene editing, discussing
the limitations of the radiance fine-tuning method for re-
lighting in §4.5 of the main paper. While ESR-NeRF effec-
tively reconstructs and manipulates emissive sources, the
radiance fine-tuning method for re-lighting has its limita-
tions. These are depicted in Fig. 27, where we note that LTS
learning-based radiance fine-tuning may be constrained to
color adjustments within the training spectrum. In other
words, using the LTS loss to transfer radiance within light
transport segments may be weak in representing new col-
ors that traverse unobserved light paths during training. For
example, it can shift colors from yellow to green but not to
blue. Additionally, the network’s inherent smoothness ca-
pability may introduce illumination inaccuracies. In the last
row in Fig. 27, changing only the top emissive source to red
inadvertently affects the bulldozer’s lower ceiling.

Exploring alternative rendering approaches could ad-
dress these issues. We showcase scene editing results by
computing direct illumination from emissive sources in



Fig. 25, enabling changes to any colors. Reconstructing
emissive sources using ESR-NeRF, then extracting emis-
sion texture maps to use rendering engines like Blender [3]
or Mitsuba [5] is also promising. Howver, the texture map
extraction in NeRF-like methods often faces severe UV at-
las fragmentation. Recent methods like Nuvo [13] offer
some hope for feasible emission texture editing. We con-
sider these avenues for future exploration
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Figure 13. Decomposed scene components on scenes with white-colored emissive sources.

White colored Vivid colored
Lego Gift Book Cube Billboard Balls Lego Gift Book Cube Billboard Balls

IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE IoU MSE
w/o progressive 0.09 18.87 0.05 5.93 0.38 2.84 0.82 30.82 0.14 1.00 0.93 0.04 0.09 6.71 0.05 3.89 0.37 1.69 0.84 10.60 0.14 0.64 0.94 0.02

w/o sg 0.79 8.33 0.50 5.32 0.35 2.91 0.96 21.28 0.72 0.80 0.95 0.04 0.16 6.43 0.35 3.60 0.35 1.87 0.93 8.65 0.89 0.25 0.92 0.03
ESR-NeRF 0.81 8.38 0.60 3.49 0.96 1.19 0.97 17.87 0.84 0.46 0.95 0.04 0.51 5.48 0.59 2.50 0.96 0.51 0.97 7.94 0.88 0.26 0.94 0.03

Table 2. Per-scene metrics on emissive source reconstruction tasks. The IoU measures the source area identification (a higher value is
better), and the MSE quantifies the difference between reconstructed images and HDR ground truth images (a lower value is better).



White colored Vivid colored
Lego Gift Book Cube Billboard Balls Lego Gift Book Cube Billboard Balls

NeILF++ 0.00 0.01 0.04 0.39 0.00 0.07 0.00 0.01 0.04 0.39 0.00 0.07
TensoIR 0.00 0.01 0.04 0.37 0.01 0.07 0.00 0.01 0.04 0.37 0.01 0.07

ESR-NeRF 0.81 0.60 0.96 0.97 0.84 0.95 0.51 0.59 0.96 0.97 0.88 0.94

NeILF++ (∗) 0.43 0.07 0.95 0.93 0.01 0.91 0.30 0.09 0.95 0.94 0.02 0.92
TensoIR (∗) 0.71 0.15 0.95 0.95 0.76 0.95 0.33 0.15 0.95 0.96 0.77 0.95

ESR-NeRF (∗) 0.81 0.60 0.98 0.98 0.94 0.96 0.51 0.61 0.98 0.97 0.93 0.94

Table 3. Results of emissive source identification. The IoU measures the source area identification (a higher value is better). The asterisk
(*) denotes that thresholding is applied to reconstructed emission strengths.
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Figure 14. Decomposed scene components on scenes with vivid-colored emissive sources.
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Figure 15. Comparison of identified emissive sources and decomposed BRDF on the Lego scene. Left: Lego white. Right: Lego vivid.
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Figure 16. Comparison of identified emissive sources and decomposed BRDF on the Gift scene. Left: Gift white. Right: Gift vivid.

White colored

Lego (C) Lego (I) Gift Book Cube Billboard (C) Billboard (I) Balls

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
NV 37.77 0.0082 37.77 0.0082 37.72 0.0060 44.95 0.0032 43.60 0.0022 36.23 0.0109 36.23 0.0109 32.49 0.0190

NV + I 32.53 0.0175 29.50 0.0261 27.27 0.0163 30.29 0.0166 31.47 0.0097 29.50 0.0188 30.31 0.0216 29.03 0.0281
NV + C 32.27 0.0220 29.93 0.0259 31.28 0.0140 34.92 0.0123 35.08 0.0083 31.17 0.0197 27.66 0.0322 31.55 0.0221

NV + I + C 29.12 0.0291 30.44 0.0248 31.02 0.0151 34.80 0.0128 34.04 0.0093 31.22 0.0200 31.94 0.0245 30.44 0.0239

Table 4. Editing performance on scenes with white-colored emissive sources by using the fine-tuning method. (C) denotes collective
adjustments of emissive sources, while (I) represents individual adjustments of emissive sources. NV denotes novel view synthesis, I
denotes intensity editing, and C denotes color editing. A higher PSNR or lower LPIPS value is better.
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Figure 17. Comparison of identified emissive sources and decomposed BRDF on the Book scene. Left: Book white. Right: Book vivid.
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Figure 18. Comparison of identified emissive sources and decomposed BRDF on the Cube scene. Left: Cube white. Right: Cube vivid.

White colored

Lego (C) Lego (I) Gift Book Cube Billboard (C) Billboard (I) Balls

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS
NV 37.77 0.0082 37.77 0.0082 37.72 0.0060 44.95 0.0032 43.60 0.0022 36.23 0.0109 36.23 0.0109 32.49 0.0190

NV + I 27.77 0.0329 29.00 0.0293 22.77 0.0461 28.85 0.0327 24.71 0.0382 26.49 0.0422 31.14 0.0249 28.41 0.0411
NV + C 30.44 0.0292 29.96 0.0284 27.00 0.0316 33.71 0.0191 30.34 0.0229 29.90 0.0328 31.14 0.0320 30.74 0.0282

NV + I + C 30.17 0.0307 30.44 0.0275 27.49 0.0318 33.40 0.0203 27.67 0.0312 29.80 0.0313 32.92 0.0242 29.94 0.0311

Table 5. Editing performance on scenes with white-colored emissive sources by computing direct illumination from reconstructed emissive
sources. (C) denotes collective adjustments of emissive sources, while (I) represents individual adjustments of emissive sources. NV
denotes novel view synthesis, I denotes intensity editing, and C denotes color editing. A higher PSNR or lower LPIPS value is better.
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Figure 19. Comparison of identified emissive sources and decomposed BRDF on the Billboard scene. Left: Billboard white. Right:
Billboard vivid.

Vivid colored

Lego (C) Gift Book Cube Billboard (C) Balls

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

NV 39.76 0.0062 38.31 0.0055 44.97 0.0033 45.13 0.0016 34.47 0.0165 32.78 0.0180
NV + I 35.00 0.0154 28.70 0.0163 32.86 0.0141 35.54 0.0072 28.56 0.0288 30.78 0.0231
NV + C 22.80 0.0916 26.00 0.0312 29.11 0.0371 22.50 0.0379 27.82 0.0347 30.05 0.0259

NV + I + C 23.28 0.0873 26.64 0.0290 28.15 0.0419 24.10 0.0361 27.12 0.0367 26.91 0.0329

Table 6. Editing performance on scenes with vivid-colored emissive sources by using the fine-tuning method. (C) denotes collective
adjustments of emissive sources. NV denotes novel view synthesis, I denotes intensity editing, and C denotes color editing. A higher
PSNR or lower LPIPS value is better.

Vivid colored

Lego (C) Gift Book Cube Billboard (C) Balls

PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

NV 39.76 0.0062 38.31 0.0055 44.97 0.0033 45.13 0.0016 34.47 0.0165 32.78 0.0180
NV + I 29.21 0.0330 24.97 0.0378 31.78 0.0216 27.44 0.0314 28.19 0.0356 27.20 0.0352
NV + C 27.41 0.0330 26.49 0.0318 33.95 0.0198 28.81 0.0260 28.51 0.0326 29.57 0.0301

NV + I + C 27.27 0.0348 26.80 0.0312 33.28 0.0232 24.62 0.0447 28.56 0.0329 24.89 0.0388

Table 7. Editing performance on scenes with vivid-colored emissive sources by computing direct illumination from reconstructed emissive
sources. (C) denotes collective adjustments of emissive sources. NV denotes novel view synthesis, I denotes intensity editing, and C
denotes color editing. A higher PSNR or lower LPIPS value is better.
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Figure 20. Decomposed scene components on DTU scenes without emissive sources.
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Figure 21. Decomposed scene components on DTU scenes without emissive sources.
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Figure 22. Illumination decomposition results. Left: scenes with white-colored, Right: scenes with vivid-colored emissive sources.
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Figure 23. Re-lighting scenes containing white emissive sources. Left: through fine-tuning radiance fields, Right: computing direct
illumination from reconstructed emissive sources.
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Figure 24. Individual emissive sources control. Left: through fine-tuning radiance fields, Right: computing direct illumination from
reconstructed emissive sources.



Image Intensity Edit Color Edit Intensity & Color Edit

Figure 25. Re-lighting scenes containing vivid-colored emissive
sources by computing direct illumination from reconstructed emis-
sive sources.
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Figure 26. Reconstructed surface normals and rendered linear im-
ages with varying λτ values. Gamma correction is applied to lin-
ear images for easy comparison.

Image Edit G.T

Figure 27. Failure cases for editing scene illumination using the
radiance fine-tuning method.

Image Normal Rendered

Figure 28. Erroneously reconstructed surfaces and rendered linear
images when using softplus activation for radiances without uti-
lizing the tone-mapper mθ . Gamma correction is applied to linear
images for easy comparison.
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