OCAI: Improving Optical Flow Estimation by
Occlusion and Consistency Aware Interpolation

Supplementary Material

1. Implementation and Training Details

1.1. Video Frame Interpolation

Datasets. We use Sintel and KITTI datasets, which are
standard Optical Flow datasets. Sintel (clean) dataset con-
sists of 20 ~ 50 consecutive frames in 23 Videos. In 12 FPS
— 24 FPS frame interpolation, we load three consecutive
frames (I1, I3, I3), and use I; and I3 as an input and gen-
erate fg image. Then, we compute the PSNR, SSIM, and
LPIPS (using AlexNet and VGG) metrics. And then, we
load next frames (Io, I3, 14), and generate fg using /s and
1, frames. We generate all frames from I 5 to I N—1 images.
Here, N is the number of the frame in each video clip (total
1018 pairs). In 6 FPS — 12 FPS frame interpolation, we
load (11, I3, I5), and generate I 3. Then, we generate frames
from 1. 3 to I N—2 (total 972 pairs). KITTI (multiview) train
dataset consists of 21 consecutive frames in 200 videos. We
generate I, to I frames, and there are 3800 pairs.
Implementation Details. @ We use IFRNet [5], VFI-
Former [8], RIFE [2], EMA-VFI [11], and AMT [6] VFI
algorithms as our backward warping baselines. We use
their official codes and weights trained on Vimeo90k.! We
also use Soft-Splatting [9] and RIPR of RealFlow [1] al-
gorithm as our forward warping baselines. We use offi-
cial codes, Vimeo trained weight for Soft-Splatting, and
FlyingChairs+FlyingThings3D trained weight for RIPR.”
RIPR and our OCAI use RAFT [10] optical flow model,
and we also use the same weight with RIPR for fair com-
parison. We set « in Eq. 10 to 50. Higher o shows good
performance as shown in Table 1. However, when it is set
too high, e.g., above 100, the result becomes not a number.

Table 1. Video Frame Interpolation results on KITTI. We evaluate
the VFI with different o weights.

o |[ PSNR/SSIMT LPIPS (A)/ (V)

1 21.9870.756 0.114/0.192
10 || 22.0670.757 0.112/0.191
50 || 22.08/0.758 0.112/0.190
100 NA /NA NA / NA

'IFRNet : https://github.com/ltkong218/IFRNet, VFI-
Former: https://github.com/dvlab-research/VFIformer,
RIFT: https://github.com/megvii-research/ECCV2022-
RIFE, EMA-VFIL: https://github.com/MCG-NJU/EMA-VFI,
AMT: https://github.com/MCG-NKU/AMT

2Soft-Splatting: https://github.com/sniklaus/softmax—
splatting RealFlow: https://github . com/megvii —
research/RealFlow

1.2. Optical Flow

Dataset. We follow semi-supervised optical flow train-
ing settings from previous work, e.g., FlowSupervisor [3],
RealFlow [1], and DistractFlow [4].In Sintel test evalua-
tion, we follow DistractFlow training pipeline and use Sin-
tel training dataset and Monkaa dataset. In KITTI test eval-
uation, FlowSupervisor and DistractFlow use additional un-
labeled datasets such as Driving and Spring, but RealFlow
uses only KITTI multi-view training dataset. In our exper-
iment, we follow RealFlow and use only KITTI multi-view
training dataset.

Implementation Details. We follow FlowSupervisor,
RealFlow, and DistractFlow settings. We set 7 and w as
0.95 and 1 in Eq. 13 and 14, same as in DistractFlow. We
use initial decay rate in EMA of 0.99 and gradually increase
it to 0.9996. Since our optical flow model already has been
trained on C+T in a semi-supervised setting, we use a higher
initial decay rate compared to [7] and use the same terminal
decay rate as [7].

2. Additional Video Frame Interpolation re-
sults

We generate more inter-frame images in Fig. 1, 2 on KITTI
and Sintel datasets. In addition, we also generate more
inter-frames with different t values (t = 0.2, 0.4, 0.6, 0.8).
Since backward warping based VFI algorithms cannot gen-
erate continuous I; images, we compare inter-frames gen-
erated by our OCAI and RIPR from RealFlow in Fig. 3.
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Figure 1. Video Frame Interpolation (VFI) results on KITTI. First row is the ground truth. Second to fifth rows are outputs of SOTA VFI
models [5, 6, 8, 11]. Sixth row is the output of using RealFlow [1] for VFI. Bottom row shows our OCAI results.
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Figure 2. Video Frame Interpolation (VFI) results on Sintel (clean). First row is the ground truth. Second to fifth rows are outputs of SOTA
VFI models [5, 6, 8, 11]. Sixth row is the output of using RealFlow [1] for VFI. Bottom row shows our OCAI results.
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Figure 3. Video Frame Interpolation (VFI) results on KITTI. We generate different /; images (for ¢ = 0.2, 0.4, 0.6, 0.8). Since backward
warping cannot generate continuous inter-frames, we generate results using RIPR from RealFlow and our proposed OCAI approach.
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