
Quantifying Task Priority for Multi-Task Optimization

Supplementary Material

A. Theoretical Analysis
A.1. Proof of Theorem 1

Theorem 1. Updating gradients based on task priority for shared parameters Θs (update gi for each θs,i) results in a
smaller multi-task loss

∑K
i=1 wiLi compared to updating the weighted summation of task-specific gradients

∑K
i=1∇wiLi

without considering task priority.

Proof. We start from shared parameters Θs and we can divide them with task priority.

Θs = {θs,1, θs,2, ..., θs,K} (11)

Let Θ̃s,i represent the parameters in Θs, excluding θs,i. For the sake of simplicity in our proof, we begin by focusing on a
subset of shared parameters, specifically θs,i, to demonstrate that accounting for task priority leads to a reduced multi-task
loss compared to neglecting it. Subsequently, we will apply the same process to the remaining shared parameters to
complete the proof. Let ĝtk be the gradient of θts,i for task τk as follows:

ĝtk = ∇θt
s,i
Lk(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
k) (12)

Previous optimization methods involving gradient manipulation update the weighted summation of task-specific gradients.
Therefore, we can update θts,i to θt+1

s,i as follows:

gt =

K∑
j=1

∇θt
s,i
wjLj(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
i) =

K∑
j=1

wj ĝ
t
j , θt+1

s,i = θts,i − ηgt (13)

where wi is loss weights of τi and
∑K

i=1 wi = 1.
From the first order Taylor approximation of Li for θs,i, we have

Li(X t, Θ̃t
s,i, θ

t+1
s,i ,Θt

i) = Li(X t, Θ̃t
s,i, θ

t
s,i,Θ

t
i) + (θt+1

s,i − θts,i)
⊤ĝti +O(η2) (14)

On the other hand, when considering task priority, we can update θts,i to θ̂t+1
s,i using ĝi as follows:

θ̂t+1
s,i = θts,i − ηĝti (15)

From the first order Taylor approximation of Li from θts,i to θ̂t+1
s,i , we have

Li(X t, Θ̃t
s,i, θ̂

t+1
s,i ,Θt

i) = Li(X t, Θ̃t
s,i, θ

t
s,i,Θ

t
i) + (θ̂t+1

s,i − θts,i)
⊤ĝti +O(η2) (16)

The difference between Eq. (14) and Eq. (16) is

Li(X t,Θ̃t
s,i, θ

t+1
s,i ,Θt

i)− Li(X t, Θ̃t
s,i, θ̂

t+1
s,i ,Θt

i) = (θt+1
s,i − θts,i)

⊤ĝti − (θ̂t+1
s,i − θts,i)

⊤ĝti (17)

= −η(gt − ĝti)
⊤ĝti (18)

Similar to Eq. (14) and Eq. (16), we have the following two inequalities for the last of the losses Lj where i ̸= j:

Lj(X t, Θ̃t
s,i, θ

t+1
s,i ,Θt

i) = Lj(X t, Θ̃t
s,i, θ

t
s,i,Θ

t
i) + (θt+1

s,i − θts,i)
⊤ĝtj +O(η2) (19)

Lj(X t, Θ̃t
s,i, θ̂

t+1
s,i ,Θt

i) = Lj(X t, Θ̃t
s,i, θ

t
s,i,Θ

t
i) + (θ̂t+1

s,i − θts,i)
⊤ĝtj +O(η2) (20)

The result in Eq. (19) corresponds to updating the weighted summation of task-specific gradients, while Eq. (20) reflects the
result when updating gradients with consideration for task priority.

The difference between Eq. (19) and Eq. (20) is

Lj(X t,Θ̃t
s,i, θ

t+1
s,i ,Θt

i)− Lj(X t, Θ̃t
s,i, θ̂

t+1
s,i ,Θt

i) = (θt+1
s,i − θts,i)

⊤ĝtj − (θ̂t+1
s,i − θts,i)

⊤ĝtj (21)

= −η(gt − ĝti)
⊤ĝtj (22)

If we sum Eq. (22) over all task losses {Lk}Kk=1 along with their corresponding task-specific weights {wk}Kk=1, the
following result is obtained:

K∑
k=1

wkLk(X t, Θ̃t
s,i, θ

t+1
s,i ,Θt

i)−
K∑

k=1

wkLk(X t, Θ̃t
s,i, θ̂

t+1
s,i ,Θt

i) (23)

= −η
K∑

k=1

wk(g
t − ĝti)

⊤ĝtk (24)

= −η
K∑

k=1

wk(

K∑
j=1

∇θt
s,i
wjLj(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
i)−∇θt

s,i
Li(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
i))

⊤ĝtk (25)

= −η
K∑

k=1

wk

 K∑
j=1

wj

(
∇θt

s,i
Lj(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
i)−∇θt

s,i
Li(X t, Θ̃t

s,i, θ
t
s,i,Θ

t
i)
)⊤

ĝtk (26)

≥ 0 (27)

The elements within the brackets of Eq. (26) represent a pairwise comparison of the changes in loss resulting from updating
the gradients of each task. Thus, the inequality of Eq. (27) holds from Definition 3 of task priority. The results indicate that
taking task priority into account yields a lower multi-task loss compared to neglecting it. Following a similar process for all
shared parameters Θs = {θs,1, θs,2, ..., θs,K}, we can conclude considering task priority leads to the expansion of the known
Pareto frontier.

A.2. Convergence Analysis

This section provides theoretical analyses of the proposed optimization method, including a convergence analysis. The
overview is as follows:
1. We present the concept of Pareto-stationarity. Previous methods [26, 36, 37, 45] have shown their convergence to Pareto

stationary points in multi-task optimization. (See Appendix A.2.1).
2. We offer a convergence analysis for Phase 1 of connection strength-based optimization. The analysis is conducted

separately for shared and task-specific parameters. For task-specific parameters, it converges to the Pareto optimal point,
similar to simple gradient descent. However, for shared parameters, Phase 1 doesn’t ensure convergence to the Pareto
optimal point; instead, it enhances the correlation between the gradients of tasks. (See Appendix A.2.2)

3. We provide the convergence rate of Phase 1, with a focus on task-specific parameters. (See Appendix A.2.3)
4. We present a convergence analysis for Phase 2 of connection strength-based optimization, specifically focusing on the

shared parameters of the network. Our analysis shows that Phase 2 converges to the Pareto optimal point, distinguishing
it from previous works that converge to Pareto stationary points. (See Appendix A.2.4)

5. We provide the convergence rate of Phase 2. (See Appendix A.2.5)

A.2.1 Pareto-stationarity

Initially, we establish the concept of a Pareto stationary point. Previous methods [26, 36, 37, 45] have shown their
convergence to Pareto stationary points in multi-task optimization.

Definition 5 (Pareto stationarity). The network parameter Θ is defined with task-specific losses {Li}Ki=1. If the sum of
weighted gradients

∑K
i=1 wi∇ΘLi = 0, then the point is termed Pareto stationary, indicating the absence of a descent

direction from that point.

Previous research [26, 36, 37, 45] has demonstrated their convergence to Pareto stationary points, which carries the risk of
leading to sub-optimal solutions. This is due to the fact that Pareto-stationarity is a necessary condition for
Pareto-optimality. In contrast, our work establishes convergence to the Pareto optimal point during Phase 2 of connection
strength-based optimization. Phase 1 doesn’t assure attainment of the Pareto optimal solution. Instead, it enhances the
correlation between task gradients, amplifying the significance of task-specific parameters to learn task priorities.

A.2.2 Convergence of Phase 1

In the subsequent convergence analysis, we omit the input X t for clarity.

Theorem 2 (Convergence of Phase 1). Assume losses {Li}Ki=1 are convex and differentiable and the gradient of {Li}Ki=1 is
Lipschitz continuous with constant H > 0, i.e. ||∇Li(x)−∇Li(y)|| ≤ H||x− y|| for i = 1, 2, ...,K. Phase 1 of connection
strength optimization, with a step size η ≤ 1

H , will converge to the Pareto optimal point for task-specific parameters
{Θi}Ki=1. For shared parameters Θs with a step size η ≤ 2

H , it does not guarantee convergence to the Pareto optimal point,
but it optimizes in the direction to increase the correlation between tasks’ gradients.

Proof. We begin by conducting a quadratic expansion of the task-specific loss Li(Θ
t
s,Θ

t
i) concerning the parameters Θt

s

and Θt
i at each update step of Phase 1 for sequential tasks.

Li(Θ
t+i/K
s ,Θt+1

i) ≤Li(Θ
t+(i−1)/K
s ,Θt

i) (28)

+∇
Θ

t+(i−1)/K
s

Li(Θ
t+(i−1)/K
s ,Θt

i)(Θ
t+i/K
s −Θt+(i−1)/K

s) (29)

+
1

2
∇2

Θ
t+(i−1)/K
s

Li(Θ
t+(i−1)/K
s ,Θt

i)(Θ
t+i/K
s −Θt+(i−1)/K

s)2 (30)

+∇Θt
i
Li(Θ

t+(i−1)/K
s ,Θt

i)(Θ
t+1
i −Θt

i) (31)

+
1

2
∇2

Θ
t+(i−1)/K
i

Li(Θ
t+(i−1)/K
s ,Θt

i)(Θ
t+1
i −Θt

i)
2 (32)

≤Li(Θ
t+(i−1)/K
s ,Θt

i) (33)

+∇
Θ

t+(i−1)/K
s

Li(Θ
t+(i−1)/K
s ,Θt

i)(Θ
t+i/K
s −Θt+(i−1)/K

s) (34)

+
1

2
H(Θt+i/K

s −Θt+(i−1)/K
s)2 (35)

+∇Θt
i
Li(Θ

t+(i−1)/K
s ,Θt

i)(Θ
t+1
i −Θt

i) (36)

+
1

2
H(Θt+1

i −Θt
i)

2 (37)

for i = 1, 2, ...,K. The inequality in Eq. (33) holds as∇L is Lipschitz continuous with constant H which implies that
∇2L −HI ≤ 0. We follow the gradient update rule for Phase 1 in connection strength-based optimization:

Θt+i/K = Θt+(i−1)/K − ηwi∇Θ
t+(i−1)/K
s

Li(Θ
t+(i−1)/K
s ,Θt

i) (38)

Θt+1
i = Θt

i − ηwi∇Θt
i
Li(Θ

t
i) (39)

for i = 1, 2, ...,K. To simplify the proof, we partition the equation into two subsets—one for shared parameters Θs and the
other for task-specific parameters Θi.
(i) For task-specific parameter Θi, the following inequality holds:

Li(Θ
t
s,Θ

t+1
i) ≤ Li(Θ

t
s,Θ

t
i) +∇Θt

i
Li(Θ

t
s,Θ

t
i)(Θ

t+1
i −Θt

i) +
1

2
H(Θt+1

i −Θt
i)

2 (40)

We denote gti as the gradient of Θt
i for task τi as follows:

gti = ∇Θt
i
Li(Θ

t
s,Θ

t
i) (41)

If we substitute Eq. (39) into Eq. (40), it becomes as follows:

Li(Θ
t
s,Θ

t+1
i) ≤Li(Θ

t
s,Θ

t
i)− ηwi||gti||2 +

η2iw
2
i

2
H||gti||2 (42)

=Li(Θ
t
s,Θ

t
i)− ηwi(1−

1

2
ηwiH)||gti||2 (43)

≤Li(Θ
t
s,Θ

t
i)−

1

2
ηwi||gti||2 (44)

Eq. (44) is valid when the step size η is sufficiently small, specifically, when η ≤ 1
Hwi

. When we sum Eq. (44) over all task
losses {Lk}Kk=1 along with their corresponding task-specific weights {wk}Kk=1, the following result is obtained:

K∑
i=1

wiLi(Θ
t
s,Θ

t+1
i) ≤

K∑
i=1

wiLi(Θ
t
s,Θ

t
i)−

1

2

K∑
i=1

ηw2
i ||gti||2 (45)

According to Eq. (45), we can infer that the application of Phase 1 in connection strength-based optimization can result in
gi = 0 for i = 1, 2, ...,K. The condition gti = 0 indicates that the proposed updating rule converges to the Pareto-optimal
point for task-specific parameters Θi for i = {1, 2, ...,K}.

(ii) For shared parameter Θs, the following inequality holds:

Li(Θ
t+i/K
s ,Θt

i) ≤ Li(Θ
t+(i−1)/K
s ,Θt

i)+∇Θ
t+(i−1)/K
s

Li(Θ
t+(i−1)/K
s ,Θt

i)(Θ
t+i/K
s −Θt+(i−1)/K

s) (46)

+
1

2
H(Θt+i/K

s −Θt+(i−1)/K
s)2 (47)

In case (ii), we denote gti as the gradient of Θt
s for task τi, and gt as the weighted sum of {gti}Ki=1 with {wi}Ki=1 as follows:

gti = ∇Θt
s
Li(Θ

t
s,Θ

t
i), gt =

K∑
i=1

wi∇Li(Θ
t
s,Θ

t
i) (48)

If we substitute Eq. (38) into Eq. (46) and Eq. (47), it becomes as follows:

Li(Θ
t+i/K
s ,Θt

i) ≤Li(Θ
t+(i−1)/K
s ,Θt

i)− ηwi||gt+(i−1)/K
i ||2 + η2w2

i

2
H||gt+(i−1)/K

i ||2 (49)

Similarly, the quadratic expansion of Lj for Θt+i/K
s when i ̸= j is as follows:

Lj(Θ
t+i/K
s ,Θt

j) ≤ Lj(Θ
t+(i−1)/K
s ,Θt

j) +∇Θ
t+(i−1)/K
s

Lj(Θ
t+(i−1)/K
s ,Θt

j)(Θ
t+i/K
s −Θt+(i−1)/K

s) (50)

+
1

2
H(Θt+i/K

s −Θt+(i−1)/K
s)2 (51)

≤ Lj(Θ
t+(i−1)/K
s ,Θt

j)− ηwig
t+(i−1)/K
i · gt+(i−1)/K

j +
η2w2

i

2
H||gt+(i−1)/K

i ||2 (52)

When we sum Eq. (49) and Eq. (52) over all task losses {Lk}Kk=1 along with their corresponding task-specific weights
{wk}Kk=1, the following result is obtained:

K∑
k=1

wkLk(Θ
t+i/K
s ,Θt

k) ≤
K∑

k=1

wkLk(Θ
t+(i−1)/K
s ,Θt

k)− ηwi

K∑
k=1

wkg
t+(i−1)/K
i · gt+(i−1)/K

k +
η2w2

i

2
H||gt+(i−1)/K

i ||2

(53)

=

K∑
k=1

wkLk(Θ
t+(i−1)/K
s ,Θt

k)− ηwig
t+(i−1)/K
i · gt+(i−1)/K +

η2w2
i

2
H||gt+(i−1)/K

i ||2 (54)

≤
K∑

k=1

wkLk(Θ
t+(i−1)/K
s ,Θt

k)− ηwig
t+(i−1)/K
i · gt+(i−1)/K + ηw2

i ||g
t+(i−1)/K
i ||2 (55)

=

K∑
k=1

wkLk(Θ
t+(i−1)/K
s ,Θt

k)− ηwig
t+(i−1)/K
i · (gt+(i−1)/K − wig

t+(i−1)/K
i) (56)

Eq. (55) is valid when the step size η is sufficiently small, specifically, when η ≤ 2
H . As shown in Eq. (56), Phase 1 of

connection strength-based optimization does not strictly ensure convergence. This is attributed to its sequential updating of
task-specific connections, leading to fluctuations in their losses during training. Nevertheless, as illustrated in Eq. (56), we
can note that the optimization moves in the direction of minimizing the dot product between the gradient of the currently
updated task g

t+(i−1)/K
i and the weighted sum of gradients from the remaining losses (gt+(i−1)/K − wig

t+(i−1)/K
i). This

observation aligns with the experimental results presented in Fig. 3. Phase 1 effectively increases the correlation between
tasks in shared parameters Θs, which exaggerates the role of task-specific parameters, allowing it to sufficiently grasp and
establish task priorities.

A.2.3 Convergence rate of Phase 1

Theorem 3 (Convergence rate of Phase 1). Assume losses {Li}Ki=1 are convex and differentiable and the gradient of
{Li}Ki=1 is Lipschitz continuous with constant H > 0, i.e. ||∇Li(x)−∇Li(y)|| ≤ H||x− y|| for i = 1, 2, ...,K. Then, in
phase 1 of connection strength optimization with a step size η ≤ 1

H , the system will reach the Pareto optimal point for
task-specific parameters {Θi}Ki=1 at a rate of O(1/T), where T is the total number of iterations. This is guaranteed by the
following inequality:

min
0≤t≤T

K∑
k=1

w2
k||gtk||2 ≤

2

ηT
(L(Θ0)− L(Θ∗)) (57)

where Θ∗ represents the converged parameters, and T is the total number of iterations.

Proof. We begin with the result from Eq. (45). To simplify, let L represent the total loss, defined as
L(Θt) =

∑K
i=1 wiLi(Θ

t). We only consider task-specific parameters {Θi}Ki=1 for analysis.

L(Θt+1) ≤L(Θt)− 1

2

K∑
i=1

ηw2
i ||gti||2 (58)

By rearranging the term in Eq. (58):

K∑
i=1

w2
i ||gti||2 ≤

2

η
(L(Θt)− L(Θt+1)) (59)

If we consider iterations for t ∈ [0, T], then we have:

min
0≤t≤T

K∑
k=1

w2
k||gtk||2 ≤

2

ηT

T−1∑
t=0

(L(Θt)− L(Θt+1)) (60)

=
2

ηT
(L(Θ0)− L(ΘT)) (61)

≤ 2

ηT
(L(Θ0)− L(Θ∗)) (62)

where Θ∗ represents the converged parameters. Our approach maintains a convergence rate of O(1/T) for task-specific
parameters {Θi}Ki=1.

A.2.4 Convergence of Phase 2

In the subsequent convergence analysis, we omit the input X t for clarity.

Theorem 4 (Convergence of Phase 2). Assume losses {Li}Ki=1 are convex and differentiable and the gradient of {Li}Ki=1 is
Lipschitz continuous with constant H > 0, i.e. ||∇Li(x)−∇Li(y)|| ≤ H||x− y|| for i = 1, 2, ...,K Then, phase 2 of
connection strength optimization with step size η ≤ 1

Hwi
for all i = 1, 2, ...,K will converge to the Pareto-optimal point.

Proof. We start from quadratic expansion of task-specific loss of task τi for θs,j .

Li(θ
t+1
s,j , Θ̃t

s,j ,Θ
t
i) ≤Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i) +∇Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)(θ

t+1
s,i − θts,i) +

1

2
∇2Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)(θ

t+1
s,i − θts,i)

2 (63)

≤Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i) +∇Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)(θ

t+1
s,i − θts,i) +

1

2
H(θt+1

s,i − θts,i)
2 (64)

The inequality in Eq. (64) holds as∇L is Lipschitz continuous with constant H . It implies that∇2L −HI ≤ 0.
Let gtk be the gradient of θts,j for task τk as follows:

gtk = ∇θt
s,j
Lk(Θ̃

t
s,j , θ

t
s,i,Θ

t
k) (65)

The gradient update rule for Phase 1 in connection strength-based optimization is as follows:

θt+1
s,i =

{
θts,i − ηwi(g

t
i), if i = j.

θts,i − ηwj(g
t
j −

gt
i ·g

t
j

||gt
i ||2

gti), otherwise.
(66)

(i) When i = j, if we substitute Eq. (66) into Eq. (64), it becomes as follows.

Li(θ
t+1
s,j , Θ̃t

s,j ,Θ
t
i) ≤Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)− ηwi||gti||2 +

η2w2
i

2
H||gti||2 (67)

=Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i)− ηwi||gti||2(1−

1

2
ηwiH) (68)

Assuming that the step size η is sufficiently small, such that η ≤ 1
Hwi

. Thus the following inequality holds:

Li(θ
t+1
s,j , Θ̃t

s,j ,Θ
t
i) ≤Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)−

1

2
ηwi||gti||2 (69)

(ii) When i ̸= j, if we substitute Eq. (66) into Eq. (64) similarly, it becomes as follows.

Li(θ
t+1
s,j ,Θ̃t

s,j ,Θ
t
i) ≤ Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)− ηwjg

t
j(g

t
j −

gti · gtj
||gti||2

gti) +
η2w2

j

2
H||(gtj −

gti · gtj
||gti||2

gti)||2 (70)

=Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i)− ηwj(||gtj ||2 −

(gti · gtj)2

||gti||2
)) +

η2w2
j

2
H(||gtj ||2 − 2

(gti · gtj)2

||gti||2
+

(gti · gtj)2

||gti||2
) (71)

=Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i)− ηwj(1−

1

2
ηwjH)(||gtj ||2 −

(gti · gtj)2

||gti||2
)) (72)

Given that the step size η satisfies η ≤ 1
Hwj

, the following inequality holds.

Li(θ
t+1
s,j , Θ̃t

s,j ,Θ
t
i) ≤Li(θ

t
s,j , Θ̃

t
s,j ,Θ

t
i)−

1

2
ηwj(||gj ||2 −

(gti · gtj)2

||gti||2
)) (73)

=Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i)−

1

2
ηwj ||gtj ||2(1−

(gti · gtj)2

||gti||2||gtj ||2
)) (74)

=Li(θ
t
s,j , Θ̃

t
s,j ,Θ

t
i)−

1

2
ηwj ||gtj ||2(1− cos2ϕt

ij) (75)

where ϕt
ij is the angle between gti and gtj . When we sum Eq. (69) and Eq. (75) over all task losses {Lk}Kk=1 along with their

corresponding task-specific weights {wk}Kk=1, the following result is obtained:
K∑

k=1

wkLk(θ
t+1
s,j , Θ̃t

s,j ,Θ
t
k) ≤

K∑
k=1

wkLk(θ
t
s,j , Θ̃

t
s,j ,Θ

t
k)−

1

2
η(w2

j ||gtj ||2 +
K∑

k=1
k ̸=j

w2
k||gtk||2(1− cos2ϕt

jk)) (76)

We can follow a similar process for all shared parameters Θs = {θs,1, θs,2, ..., θs,K}. The second term on the right side of
Eq. (76) is not smaller than zero, proving their convergence. This term can be zero only when gtk = 0 for all k = 1, 2, ...,K.
Thus, we can conclude that the application of Phase 2 in connection strength-based optimization can lead to a Pareto-optimal
state, as all task-specific gradients converge to zero in the optimization process. Understanding the task priority of each
parameter enables the expansion of the known Pareto frontier which is consistent with the results of Theorem 1. Repeatedly
applying Phase 2 of connection strength-based optimization ultimately leads to Pareto optimality.

A.2.5 Convergence rate of Phase 2

Theorem 5 (Convergence rate of Phase 2). Assume losses {Li}Ki=1 are differentiable and the gradient of {Li}Ki=1 is
Lipschitz continuous with constant H > 0, i.e. ||∇Li(x)−∇Li(y)|| ≤ H||x− y|| for i = 1, 2, ...,K Then, phase 2 of
connection strength optimization with step size η ≤ 1

H , the system will reach the Pareto optimal point at a rate of O(1/T),
where T is the total number of iterations. This is guaranteed by the following inequality:

min
0≤t≤T

K∑
k=1

w2
k||gtk||2 ≤

2

η(1− α2)T
(L(Θ0)− L(Θ∗)) (77)

where Θ∗ represents the converged parameters, α is a constant satisfying α > −1, and T is the total number of iterations.

Proof. We start with the outcome (Eq. (76)) derived in Theorem 4. For simplicity, consider the following notation.

L(Θt) =

K∑
k=1

wkLk(Θ
t), gt =

K∑
j=1

wj∇Lj(Θ
t) (78)

And each update iteration t is indicated as a superscript for the gradients. Therefore, Eq. (76) can be expressed as follows:

L(Θt+1) ≤L(Θt)− 1

2
η(w2

j ||gtj ||2 +
K∑

k=1
k ̸=j

w2
k||gtk||2(1− cos2ϕt

jk)) (79)

The term (1− cos2 ϕt
jk) ≤ 1 holds for all k = 1, 2, ...,K.

Let c represent the task number that minimizes the term 1− cos2 ϕt
jk excluding j.

c = argmin
k

k ̸=j

(1− cos2ϕt
jk)) (80)

By employing Eq. (80) in Eq. (79), the following inequality holds:

L(Θt+1) ≤L(Θt)− 1

2
η(w2

j ||gtj ||2 +
K∑

k=1
k ̸=j

w2
k||gtk||2(1− cos2ϕt

jc)) (81)

≤L(Θt)− 1

2
η(w2

j ||gtj ||2(1− cos2ϕt
jc) +

K∑
k=1
k ̸=j

w2
k||gtk||2(1− cos2ϕt

jc)) (82)

=L(Θt)− 1

2
η(1− cos2ϕt

jc)

K∑
k=1

w2
k||gtk||2 (83)

By rearranging the term in Eq. (83):
K∑

k=1

w2
k||gtk||2 ≤

2

η(1− cos2ϕt
jc)

(L(Θt)− L(Θt+1)) (84)

If we consider iterations for t ∈ [0, T] and let α satisfy cosϕt
jc ≥ α > −1, then we have:

min
0≤t≤T

K∑
k=1

w2
k||gtk||2 ≤

2

η(1− α2)T

T−1∑
t=0

(L(Θt)− L(Θt+1)) (85)

=
2

η(1− α2)T
(L(Θ0)− L(ΘT)) (86)

≤ 2

η(1− α2)T
(L(Θ0)− L(Θ∗)) (87)

where Θ∗ represents the converged parameters. Our approach maintains a convergence rate of O(1/T).

B. Loss scaling methods
In this paper, we used 4 different loss scaling methods to weigh multiple tasks’ losses.
1. All tasks’ losses are weighted equally.
2. The weights of tasks are tuned manually following the previous works [40, 43]. For NYUD-v2, the weight of losses is as

follows:
Depth : SemSeg : Surface Normal : Edge = 1.0 : 1.0 : 10.0 : 50.0

For PASCAL-Context, the weight of losses is as follows:
Semseg : PartSeg : Saliency : Surface Normal : Edge = 1.0 : 2.0 : 5.0 : 10.0 : 50.0

3. The losses are dynamically weighted by homoscedastic uncertainty [22].
An uncertainty that cannot be reduced with increasing data is called Aleatoric uncertainty. Homoscedastic uncertainty is
a kind of Aleatoric uncertainty that stays constant for all input data and varies between different tasks. So it is also called
task-dependent uncertainty. Homoscedastic uncertainty is formulated differently depending on whether the task is a
regression task or a classification task as each of them uses different output functions: A regression task uses Gaussian
Likelihood, in contrast, a classification task uses softmax function. The objectives of uncertainty weighting are as
follows:

LTotal =
K∑
i=1

L̂i where L̂i =

1

2σ2
1

Li + log σi for regression task

1

σ2
2

Li + log σi for classification task

 (88)

4. The losses are dynamically weighted by descending rate of loss [29] which is called Dynamic Weight Average (DWA).
The weight of task wi is defined as follows with DWA:

wi(t) =
K exp(wi(t− 1)/T)∑K
i=1 exp(wi(t− 1)/T)

where wi(t− 1) =
Lk(t− 1)

Lk(t− 2)
(89)

where t is an iteration index and K is the number of tasks. T represents the temperature parameter governing the softness
of task weighting. As T increases, the tasks become likely to be weighted equally. We used T = 2 for our experiments
following the works in [29].

C. Experimental Details
Implementation details. To train MTI-Net [40] on both NYUD-v2 and PASCAL-Context, we adopted the loss schema and
augmentation strategy from PAD-Net[43] and MTI-Net[40]. For depth estimation, we utilized L1 loss, while the
cross-entropy loss was used for semantic segmentation. To train for saliency estimation and edge detection, we employed
the well-known balanced cross-entropy loss. Surface normal prediction used L1 loss. We augmented input images by
randomly scaling them with a ratio from 1, 1.2, 1.5 and horizontally flipping them with a 50% probability. The network was
trained for 200 epochs for NYUD-v2 and 50 epochs for PASCAL-Context using the Adam optimizer. We employed a
learning rate of 10−4 with a poly learning rate decay policy. We used a weight decay of 10−4 and batch size of 8.
In contrast, for Cityscapes with SegNet [1], we followed the experimental setting in [13, 26]. We used L1 loss and
cross-entropy loss for depth estimation and semantic segmentation, respectively. The network was trained for 200 epochs
using the Adam optimizer. We employed a learning rate of 5× 10−5 with multi-step learning rate scheduling. We used a
batch size of 8.
Evaluation metric. To evaluate the performance of tasks, we employed widely used metrics. For semantic segmentation,
we utilized mean Intersection over Union (mIoU), Pixel Accuracy (PAcc), and mean Accuracy (mAcc). Surface normal
prediction’s performance was measured by calculating the mean and median angle distances between the predicted output
and ground truth. We also used the proportion of pixels within the angles of 11.25◦, 22.5◦, 30◦ to the ground truth, as
suggested by [10]. To evaluate the depth estimation task, we followed the methods proposed in [11, 27, 42]. We used Root
Mean Squared Error (RMSE), and Mean Relative Error (abs rel). For saliency estimation and human part segmentation, we
employed mean Intersection over Union (mIoU).

D. Additional Experimental Results

We compare GD, MGDA [36], PCGrad [45], CAGrad [26], Aligned-MTL [37], and connection strength-based optimization
on 4 different multi-task loss scaling methods mentioned in Appendix B. We have summarized the experimental overview as
follows.

1. NYUD-v2 with HRNet-18 on various loss scaling is evaluated in Tabs. 5 to 7.
2. NYUD-v2 with ResNet-18 on various loss scaling is evaluated in Tabs. 8 to 11.
3. PASCAL-Context with HRNet-18 on various loss scaling is evaluated in Tabs. 12 to 14.

D.1. NYUD-v2 with HRNet-18

Table 5. The experimental results of different multi-task optimization methods on NYUD-v2 with HRNet-18. The losses of all tasks
are evenly weighted. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.595 0.150 40.67 70.11 53.41 21.45 15.02 39.06 66.42 76.87 + 10.00
MGDA [36] 0.587 0.148 40.69 70.40 53.15 21.30 14.73 39.59 66.85 77.12 + 10.66
PCGrad [45] 0.581 0.155 40.33 70.44 52.83 21.23 14.59 40.01 67.17 77.31 + 10.71
CAGrad [26] 0.576 0.149 40.00 70.45 51.75 21.09 14.50 40.18 67.40 77.47 + 10.85
Aligned-MTL [37] 0.588 0.152 40.58 70.37 52.71 21.17 14.55 40.07 67.23 77.39 + 10.71
Ours 0.576 0.143 41.20 71.03 53.76 20.42 13.75 42.20 69.22 78.88 + 13.13

Table 6. The experimental results of different multi-task optimization methods on NYUD-v2 with HRNet-18. The losses are weighted
using Dynamic Weight Average (DWA). Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is
used to indicate the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.592 0.146 40.86 70.19 53.01 21.15 14.52 40.20 67.36 77.48 + 10.82
MGDA [36] 0.593 0.147 40.46 70.10 52.83 21.30 14.68 39.73 66.90 77.16 + 10.13
PCGrad [45] 0.593 0.147 40.34 70.00 52.37 21.36 14.77 39.57 66.78 77.07 + 9.91
CAGrad [26] 0.576 0.146 40.52 70.23 52.73 21.09 14.59 40.18 67.40 77.49 + 11.38
Aligned-MTL [37] 0.590 0.147 40.43 70.09 52.66 21.18 14.61 39.98 67.21 77.39 + 10.44
Ours 0.565 0.141 41.64 70.97 54.49 20.35 13.48 43.04 69.60 78.95 + 14.24

Table 7. The experimental results of different multi-task optimization methods on NYUD-v2 with HRNet-18. The losses are weighted by
homoscedastic uncertainty. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate
the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.589 0.148 39.93 70.15 51.99 21.13 14.46 40.47 67.28 77.38 + 9.87
MGDA [36] 0.590 0.148 39.78 69.77 51.80 21.24 14.69 39.78 66.94 77.22 + 9.69
PCGrad [45] 0.587 0.147 40.56 69.97 53.07 21.19 14.40 40.51 67.46 77.41 + 10.71
CAGrad [26] 0.583 0.147 40.23 70.06 52.74 21.09 14.47 40.23 67.48 77.50 + 10.73
Aligned-MTL [37] 0.589 0.147 40.08 69.91 52.23 21.15 14.47 10.19 67.45 77.45 + 10.17
Ours 0.569 0.140 41.16 70.83 53.65 20.19 13.39 43.33 70.07 79.30 + 13.81

D.2. NYUD-v2 with ResNet-18

Table 8. The experimental results of different multi-task optimization methods on NYUD-v2 with ResNet-18. The losses of all tasks
are evenly weighted. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.613 0.160 38.54 68.89 51.04 22.09 15.35 38.29 65.12 75.61 + 8.09
MGDA [36] 0.616 0.165 39.49 69.30 52.30 22.52 15.61 37.92 64.25 74.77 + 8.24
PCGrad [45] 0.618 0.164 38.76 69.01 51.12 22.05 15.28 38.55 65.36 75.77 + 8.10
CAGrad [26] 0.610 0.160 39.20 69.38 51.58 22.18 15.61 37.65 64.70 75.42 + 8.75
Aligned-MTL [37] 0.612 0.161 39.35 69.21 51.80 22.34 15.47 38.12 64.83 75.61 + 8.56
Ours 0.601 0.162 38.30 68.78 51.01 21.09 14.31 40.95 67.57 77.50 + 9.89

Table 9. The experimental results of different multi-task optimization methods on NYUD-v2 with ResNet-18. The weights of tasks are
manually tuned. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.622 0.163 38.07 68.31 50.84 21.49 14.63 40.04 66.87 76.87 + 8.03
MGDA [36] 0.635 0.166 38.18 68.22 49.70 22.07 15.01 39.11 65.81 75.90 + 6.65
PCGrad [45] 0.617 0.165 37.80 67.94 50.00 21.52 14.53 40.27 66.91 76.71 + 7.98
CAGrad [26] 0.620 0.163 37.02 67.96 49.71 21.67 14.80 39.55 66.46 76.56 + 6.86
Aligned-MTL [37] 0.625 0.166 38.01 68.12 50.43 21.62 14.75 39.62 66.58 76.68 + 7.64
Ours 0.600 0.157 39.00 69.02 51.11 20.65 13.77 42.78 68.97 78.30 + 11.24

Table 10. The experimental results of different multi-task optimization methods on NYUD-v2 with ResNet-18. The losses are weighted
using Dynamic Weight Average (DWA). Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is
used to indicate the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.607 0.159 38.65 68.99 51.72 22.17 15.52 38.51 65.11 75.47 + 8.38
MGDA [36] 0.616 0.165 39.38 69.18 51.78 22.53 15.69 37.68 64.12 74.67 + 8.12
PCGrad [45] 0.612 0.162 38.56 68.97 51.16 22.11 15.40 38.20 65.07 75.58 + 8.13
CAGrad [26] 0.609 0.157 39.40 69.30 51.84 22.28 15.68 37.62 64.46 75.24 + 8.85
Aligned-MTL [37] 0.609 0.161 39.22 69.04 69.01 22.15 15.48 38.30 65.08 75.52 + 8.86
Ours 0.592 0.148 38.41 68.82 51.15 20.96 14.25 40.97 67.59 77.10 + 10.63

Table 11. The experimental results of different multi-task optimization methods on NYUD-v2 with ResNet-18. The losses are weighted by
homoscedastic uncertainty. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate
the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.608 0.158 39.02 69.29 51.48 22.06 15.47 37.98 65.01 75.68 + 8.85
MGDA [36] 0.623 0.162 39.43 69.30 51.79 22.65 15.77 37.39 64.03 74.66 + 7.64
PCGrad [45] 0.606 0.158 39.40 69.25 51.68 22.25 15.43 38.05 64.81 75.35 + 9.04
CAGrad [26] 0.600 0.156 38.62 68.74 51.03 22.27 15.43 38.11 64.85 75.32 + 8.56
Aligned-MTL [37] 0.605 0.158 39.10 69.23 51.56 22.13 15.49 37.77 64.89 75.51 + 8.97
Ours 0.595 0.153 38.67 69.01 51.01 21.05 14.11 41.43 67.91 77.59 + 10.61

D.3. PASCAL-Context with HRNet-18

Table 12. The experimental results of different multi-task optimization methods on PASCAL-Context dataset with HRNet-18. The losses
of all tasks are evenly weighted. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to
indicate the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 61.65 90.14 58.35 65.80 78.07 16.71 13.82 39.70 75.18 87.17 - 4.12
MGDA [36] 63.52 90.68 60.38 64.99 77.57 17.00 14.13 38.58 74.47 86.77 - 3.30
PCGrad [45] 63.21 90.33 60.42 64.77 77.48 16.65 13.71 39.64 75.10 87.07 - 2.90
CAGrad [26] 63.44 90.53 60.11 64.83 77.52 16.92 13.98 39.03 75.01 86.92 - 3.37
Aligned-MTL [37] 62.38 90.31 60.36 65.68 79.92 16.73 13.88 39.68 75.18 87.10 - 3.07
Ours 62.64 90.39 61.42 67.10 78.91 15.58 12.68 43.93 78.69 89.26 - 0.05

Table 13. The experimental results of different multi-task optimization methods on PASCAL-Context dataset with HRNet-18. The losses
are weighted using Dynamic Weight Average (DWA). Experiments are repeated over 3 random seeds and average values are presented. △m

↑(%) is used to indicate the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 64.70 91.18 60.60 66.54 78.18 15.13 12.23 45.77 79.91 89.96 + 1.02
MGDA [36] 64.56 90.72 60.69 65.93 77.37 16.87 13.95 39.35 74.69 86.82 - 2.17
PCGrad [45] 64.35 90.98 60.99 66.12 77.65 15.92 13.11 41.98 76.21 88.03 - 0.45
CAGrad [26] 64.03 90.77 60.62 66.01 77.42 16.63 13.86 40.02 75.22 87.41 - 1,98
Aligned-MTL [37] 64.41 91.00 60.77 66.09 77.51 16.22 13.48 42.26 76.92 88.66 - 1.04
Ours 63.89 90.73 61.89 67.39 79.08 14.94 12.10 46.27 80.57 90.41 + 1.86

Table 14. The experimental results of different multi-task optimization methods on PASCAL-Context dataset with HRNet-18. The losses
are weighted by homoscedastic uncertainty. Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is
used to indicate the percentage improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 64.40 91.05 62.28 68.13 79.64. 14.95 12.14 46.19 80.36 90.34 + 2.49
MGDA [36] 64.04 90.88 61.18 67.65 79.23 15.02 12.20 45.93 80.02 90.11 + 1.59
PCGrad [45] 64.75 91.11 62.41 68.16 79.65 14.86 11.93 47.03 80.60 90.31 + 2.85
CAGrad [26] 64.01 90.77 61.32 67.55 79.01 15.08 12.31 45.87 79.98 90.05 + 1.50
Aligned-MTL [37] 64.48 91.09 62.23 67.61 79.18 15.01 12.11 46.01 80.17 90.20 + 2.21
Ours 64.01 90.70 61.78 68.32 81.50 14.53 11.52 48.21 81.88 90.74 + 2.90

E. Additional Ablation Studies
The order of updating tasks in Phase 1 has little impact on multi-task performance. To learn task priority in shared
parameters, Phase 1 updates each task-specific gradient one by one sequentially. To determine the influence of the order of
tasks on optimization, we randomly chose 5 sequences of tasks and showed their performance in Tab. 15. From the results,
we can see that the order of updating tasks in Phase 1 does not have a significant impact on multi-task performance.

Table 15. The experimental results for NYUD-v2 with HRNet-18 involved exploring different task sequence orders in Phase 1. We
conducted ablation experiments with five randomly selected task sequences. Each task was represented by a single alphabet letter, as
follows: S for semantic segmentation, D for depth estimation, E for edge detection, and N for surface normal estimation.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

N-D-S-E 0.574 0.157 41.12 70.44 53.77 19.60 12.52 46.01 71.33 80.02 + 14.47
D-S-N-E 0.568 0.153 40.92 70.23 53.56 19.55 12.47 46.09 71.50 80.12 + 14.65
E-D-S-N 0.568 0.150 40.97 70.22 53.59 19.58 12.50 46.08 71.44 80.07 + 14.65
D-N-E-S 0.571 0.153 41.03 70.31 53.68 19.49 12.44 46.17 71.58 80.17 + 14.71
S-D-E-N 0.565 0.148 41.10 70.37 53.74 19.54 12.45 46.11 71.54 80.12 + 15.00

Our method demands the least computational load when compared to previous optimization methods. In Tab. 16, we
show the impact of the proposed optimization on training time. The training time for each method is measured in seconds
per epoch. To ensure a fair comparison, all methods were evaluated using the same architecture, guaranteeing an equal
number of parameters and memory usage. The majority of the computational burden is concentrated on the forward pass,
backpropagation, and gradient manipulation. While all optimization methods follow a similar process in the forward pass
and backpropagation, the primary distinction arises from gradient manipulation. In Phase 1, no gradient manipulation is
required, resulting in the shortest time consumption. In phase 2, it still exhibits the shortest training time compared to
previous optimization methods. Unlike these previous methods that handle all shared components of the network, Phase 2
specifically targets the shared convolutional layer along with the task-specific batch normalization layer. This selective focus
significantly reduces the time consumed per epoch.

Table 16. Training time comparison for different multi-task optimization methods on NYUD-v2 with HRNet18.

Method MGDA[36] PCGrad[45] CAGrad[26] Aligned-MTL [37] Phase 1 Phase 2
Time (s) 363.98 421.48 378.12 811.57 296.74 331.53

The speed of learning the task priority differs based on the convolutional layer’s position. Phase 1 establishes the task
priority during the initial stages of the network’s optimization. Meanwhile, Phase 2 maintains this learned task priority,
ensuring robust learning even when the loss for each task fluctuates. However, The timing at which task priority stabilizes
varies based on the position of the convolutional layer within the network, as illustrated in Fig. 5. This may suggest that
optimizing by wholly separating each phase could be inefficient.

(a) layer0-0-1 (b) layer0-0-2

(c) layer1-0-0-0 (d) layer1-0-0-1

(e) layer1-0-1-0 (f) layer1-0-1-1

(g) layer2-0-0-0 (h) layer2-0-0-1

(i) layer2-2-1-0 (j) layer2-2-1-1

(k) layer2-2-2-0 (l) layer2-2-2-1

Figure 5. Visualization of the percentage of top-priority tasks over training epoch depending on the position in the network. We randomly
selected several convolutional layers from the Network. The timing at which task priority stabilizes varies depending on the position of the
convolutional layer.

(m) layer3-0-0-0 (n) layer3-0-0-1

(o) layer3-0-2-0 (p) layer3-0-2-1

(q) layer3-1-0-0 (r) layer3-1-0-1

(s) layer3-1-1-0 (t) layer3-1-1-1

(u) layer3-1-2-0 (v) layer3-1-2-1

(w) layer3-1-3-0 (x) layer3-1-3-1

Figure 5. Visualization of the percentage of top-priority tasks over training epoch depending on the position in the network. We randomly
selected several convolutional layers from the Network. The timing at which task priority stabilizes varies depending on the position of the
convolutional layer.

	. Introduction
	. Related Work
	. Preliminaries
	. Problem Definition for Multi-task Learning
	. Prior Approach for Multi-Task Optimization

	. Method
	. Motivation: Task priority
	. Type and Strength of Connection
	. Phase 1: Learning the task priority
	. Phase 2: Conserving the task priority

	. Experiments
	. Experimental Setup
	. Experimental Results
	. Ablation Study

	. Conclusion
	. Theoretical Analysis
	. Proof of theorem1
	. Convergence Analysis
	Pareto-stationarity
	Convergence of Phase 1
	Convergence rate of Phase 1
	Convergence of Phase 2
	Convergence rate of Phase 2

	. Loss scaling methods
	. Experimental Details
	. Additional Experimental Results
	. NYUD-v2 with HRNet-18
	. NYUD-v2 with ResNet-18
	. PASCAL-Context with HRNet-18

	. Additional Ablation Studies

