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In this supplemental material, we present implementation
details (Section A) and additional results (Section B) as
complements of the main content.

A. Implementation Details
A.1. Architecture Details

The main components of our model have been presented
in Section 3. Here we further provide more details about
our GenNet. Following the design of encoder-decoder with
coarse-to-fine scale [3, 16], we implement the GenNet as
shown in Figure A.1. GenNet takes as input two original
blur and RS views along with motion fields predicted by
motion interpretation model. To better refine the warped
frames, we also extract the context of blur and RS views
with different scale and concatenate them into corresponding
encoders. Two groups of warped frames from blur and RS
views will be merged through the estimated mask M and
then connected to the final outputs.
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Extended Figure A.1. Architecture of the blur decomposition.
To better refine the warped frames, we also exploit the context of
blur and RS views to generate temporally and spatially consistent
video.
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Extended Table A.1. Specifications of our triaxial imaging sys-
tem. The deadtime between two adjacent high speed frames is
extremely short and thus can be ignored.

Device RS camera GS camera HS camera

Resolution 800×800 800×800 800×800
Frame rate 20 fps 20 fps 500 fps
Exp. per Row 2 ms 18 ms 2 ms
Delay. per Row 20 µs 0 µs 0 µs
Exp. per Frame 18 ms 18 ms 2 ms
Deadtime 32 ms 32 ms 0 ms

A.2. Construction of Imaging system

Drawing inspirations from recent studies that construct co-
axis optical settings, such as [10] and [14], we develop
our triaxial imaging system to capture a realistic dataset of
strictly aligned RS, blur and high-speed videos. Initially, we
fix the RS camera and manually adjust the orientation and
position of the other two cameras by evaluating the residual
images of a checker pattern. For capturing the same visual
content in blur and RS view, the exposure time of a GS
camera is elongated to that of RS counterpart. Nonetheless,
achieving precise alignment for all three cameras in all di-
rections proved to be exceedingly difficult due to complexity
of the system. We then fixed all system components and
calibrated the alignment of three cameras by utilizing two
homographies, under the consideration of close-loop con-
straint. Given that two beamsplitters reduced incoming light
to a quarter, we collect our dataset on a sunny day to ensure
that all images were sufficiently bright. Moreover, we cooled
the high-speed camera to ensure the quality of groundtruth
frames.The specifications for 3 cameras are detailed in Ta-
ble A.1.

A.3. Experimental Data and Training Loss

A.3.1 Real Dataset

The detailed collection process of our real data is presented in
Section 3.2. Assisted by the imaging system, we established
our dataset RealBR including 54 distinct street scenes and
each scene has 56 × 3 degraded frames and 1400 sharp
HS frames. The presented data samples of RealBR are in

https://github.com/jixiang2016/dualBR


Blur RS T = 0 T = 0.5 T = 1

Extended Figure A.2. Data samples from our RealBR. We present three groundtruth frames which are temporally located at T = 0, 0.5, 1.
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Extended Figure A.3. Synthetic method. The notation B[k] denotes extracting the k-th row from frame B. n is the index of blur or RS
view. T is the number of latent frames that correspond to exposure and deadtime.

Figure A.2. After necessary preprocessing, we reorganized
entire dataset and split it into 40, 4, and 10 scenes for training,
validation and test. Notably, the characteristic differences
of two views are quite obvious. The RS has local details
with tilt effects that encode motion direction of latent frames
while blur view contains adequate global context and records
relatively precise initial state of objects.

A.3.2 Synthetic Dataset

In order to supplement our findings on the guidance of cross-
shutter view to blur decomposition, we additionally construct
a synthetic dataset following the protocol in [1, 8, 11]. The
synthesizing process is grounded on GOPRO data [7] con-
sisting of 33 videos with resolution 1280× 720. Each video
consists of 1200 consecutive frames captured at 240fps. To



achieve more realistic effects, the GOPRO dataset was ini-
tially interpolated at a factor of ×64 using an off-the-shelf
video interpolation algorithm [3].

Figure A.3 illustrates our synthesizing method. Depicted
as in [6, 11], RS videos are generated by sequentially copy-
ing a row from corresponding high-speed frames within ex-
posure time τ , and blur observations are synthesized through
averaging them. We strictly follow the constraints in Fig-
ure A.3 to ensure RS and blur views are aligned in frame
level and capture identical content of the scene. Specially,
We operate central crop of 512 to each frames, and set
T = τ = 512. Figure A.4 exhibits examples of synthe-
sized data.

For comparing with more competitive settings: IFED [16]
with dual reversed RS views, EvUnroll [18] and EBFI [12]
assisted by event camera, PMB [9] using short and long
exposure. We synthesized events from the high frame-rate
video using an event simulator [2]. The shortly exposed
inputs of PMB are generated by adding Poisson noise to clear
latent frames. Moreover, following [16], the synthesizing
process of reversed RS view is strictly aligned to original RS
and blur views.

Blur RS T = 0 T = 1

Extended Figure A.4. Data samples from our synthetic data. We
present three groundtruth frames which are temporally located at
T = 0, 1.

A.3.3 Training Loss

We train our network using the Charbonnier loss [13] to
reconstruct clear latent image sequence:

L =

N−1∑
t=0

√
∥St −Gt∥2 + ϵ2, (1)

where St, and Gt denote predicted clear frame and corre-
sponding ground truth at time instance t, respectively. N is
the length of reconstructed latent sequence and ϵ is a constant
which we empirically set to 10−3 for all the experiments.

A.3.4 Implementation Details

As explained in Sec.3.2, each blur-RS pair corresponds
to 9 high-speed sharp frames. So, for training and vali-
dation, each sample comprises a paired input (B,R) and
groundtruth video clip S′ with a length of 9. Our model
is trained by using Adam optimizer [5] with epoch of 800.
The initial learning rate is set to 10−4 and decreases to 10−6

through a cosine annealing scheduler. To augment the train-
ing data, we first crop the samples into 512 and then conduct
random horizontal flipping and channel reverse. Experi-
ments are performed on two GPUs of NVIDIA Tesla V100
with batch size of 8. We evaluate the performance of models
using standard metrics (PSNR, SSIM and LPIPS). Higher
PSNR/SSIM or lower LPIPS suggests better performance.
Besides conducting comparisons on our collected real-world
dataset RealBR, we also train all models on synthesized
dataset based on GOPRO data [7].

B. Additional Results
B.1. Experimental Results on Synthetic Data

As supplemental demonstration of conclusion drawn on real-
data RealBR, we also conduct experiments on synthetic
dataset based on GOPRO as shown in the main script. Here
we present extra qualitative results in Figure A.5.

Note that, the authors do not provide the training code of
LEVS. So, we reproduce training process strictly following
the details described in the paper. Due to unknown of some
hyper parameters, the performance on our synthetic data
is to select the optimal results from: (a) directly using the
pre-trained model to infer on our test set; (b) fine-tuning the
pre-trained model on our training set then inferring on test
set; (c) training from scratch on our data and then inferring
on test set.

Besides, more visual comparisons with different competi-
tive settings on synthetic data are also provided in Figure A.6
and Figure A.7.

B.2. Video reconstruction results

To substantiate the ability of our model in motion direction
disambiguation and local details recovery, we apply all mod-
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Extended Figure A.5. Qualitative comparison on synthetic data. Our model obviously outperforms the approaches approximating latent
motion fields relying on adjacent blurry inputs.
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Extended Figure A.6. Visual results of comparisons with competitive settings on synthetic data. It denotes the interpolated frame
temporally located at time instant t.

els to generating 9 latent frames, whose visual results are
shown in Figure B.8. In terms of motion direction, LEVS
fails to animate the scene, rendering little to none movements
in the recovered sight, while ghosting effects, reminiscent
of incorrect double exposures, are visible in AfBv, IFEDB ,
BiT, and RIFEB results, serving as evidences of false motion
estimations. As for local details, DeMFI shows an overly
smoothed vision, diminishing high frequency characteristics.
With the aid of cross-shutter guidance, IFEDBR, RIFEBR,
and ours faithfally restore authentic motions, with our results
possessing the sharpest details among the three. More exper-
imental results could be found in Figure B.9, Figure B.10
and video demos.

B.3. Additional Qualitative Results

We present additional qualitative comparisons on RealBR
dataset in Figure B.11 – Figure B.16.
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Extended Figure B.8. Reconstructed consecutive frames from blurry inputs. We present the multiple intermediate frames (5 out of 9) at
different time generated by different models. The index k of each reconstrcuted frames denote their temporal location within exposure.
B0, B1, B2, B3 are consecutive blur inputs and recovered latent frame corresponds to B1. Best viewed in zoom.
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Extended Figure B.9. Additional visual comparisons on video reconstruction of RealBR. We present the multiple intermediate frames (5
out of 9) at different time generated by different models. The index k of each reconstrcuted frames denote their temporal location within
exposure. B0, B1, B2, B3 are consecutive blur inputs and recovered latent frame corresponds to B1. Best viewed in zoom.
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Extended Figure B.10. Additional visual comparisons on video reconstruction of RealBR. We present the multiple intermediate frames
(5 out of 9) at different time generated by different models. The index k of each reconstrcuted frames denote their temporal location within
exposure. B0, B1, B2, B3 are consecutive blur inputs and recovered latent frame corresponds to B1. Best viewed in zoom.
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Extended Figure B.11. Additional qualitative comparisons on RealBR.

Blur LEVS [4] AfBp [17] AfBv [17] RIFEB [3] IFEDB [16]

BiT [15] DeMFI [8] RIFEBR [3] IFEDBR [16] Ours GT

Extended Figure B.12. Additional qualitative comparisons on RealBR.
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Extended Figure B.13. Additional qualitative comparisons on RealBR.
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Extended Figure B.14. Additional qualitative comparisons on RealBR.
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Extended Figure B.15. Additional qualitative comparisons on RealBR.
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Extended Figure B.16. Additional qualitative comparisons on RealBR.
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