
Generative Latent Coding for Ultra-Low Bitrate Image Compression

Supplementary Material

In this document, we provide the supplementary material
for the proposed generative latent coding (GLC) scheme.
This includes the detailed network structure, additional ex-
perimental results, discussion on limitations, and applica-
tion details.

1. Network Structure
GLC comprises two components: a generative latent auto-
encoder and a latent-space transform coding module. In this
section, we will demonstrate their respective model designs.

1.1. Generative Latent Auto-Encoder

In this subsection, we introduce the model structure of the
generative auto-encoder, and propose a latent patch atten-
tion mechanism for high-resolution image compression.

Auto-Encoder Structure. We employ generative VQ-
VAE models [5, 23] as the generative latent auto-encoder
due to their generative capabilities, reconstruction semantic
consistency, and sparse latent space. For the natural image
codec, we adopt the same structure as VQGAN [5], with
a latent resolution of f = 1

16 of the original images and
a codebook size of M = 16384. In the case of the fa-
cial image codec, we utilize a modified version from Code-
Former [23] with f = 1

32 and M = 1024.
Latent Patch Attention. The generative VQ-VAE mod-

els employ global attentions in the latent space to cap-
ture correlations within an image. However, we observe
that global attention is less effective for compressing high-
resolution images, where correlations between distant ob-
jects are relatively small. To address this issue, we divide
the latent representations into patches and leverage patch
attention instead of global attention. As illustrated in Table
1, latent patch attention brings significant performance im-
provement on the high-resolution CLIC 2020 test set [20].
In this paper, we use a patch size of 32× 32 by default.

1.2. Transform Coding in Latent Space

In this subsection, we introduce the details of transform
coding. As depicted in Figure 2, this process involves a la-
tent transformation that converts latent l into code y, and an
entropy model to estimate the probability of ŷ for entropy
coding.

Latent Transformation. Our model design is based on
the image codec presented in [14], which employs cascaded
depth-wise blocks for efficient compression. We config-
ure the channel number to N = 256, aligning it with the
channel number of the latent l generated by the latent auto-
encoder. We incorporate learned scalers qenc and qdec as the

PSNR = 27.47    MS-SSIM = 0.8311
LPIPS = 0.1518        DISTS = 0.0834

Original Image
PSNR = 25.67    MS-SSIM = 0.8143
LPIPS = 0.1720        DISTS = 0.0794

Figure 1. An example of comparison between pixel-level met-
rics PSNR (higher is better), MS-SSIM (higher is better), LPIPS
(lower is better), and image-level metric DISTS (lower is better).
For each metric, the superior result is highlighted in brown. From
the comparision, we can see that DISTS is a better reference per-
ceptual metric than LPIPS.

Table 1. Ablation study on patch attention on CLIC 2020 test set.

Patch size BD-Rate ↓
Global 20.8%

64× 64 8.4%
32× 32 0%
16× 16 1.8%

feature modulators to enable rate-variable compression.
Entropy Model. It estimates the entropy of the quan-

tized code ŷ through a categorical hyper module and a spa-
tial context module. In the categorical hyper module, the
codebook number Mh in the hyper codebook Ch is the same
as that in the auxiliary codebook C. During inference, the
indices of the hyper information ẑ are compressed using
fixed-length coding, where each code index is encoded into
log2 Mh bits. For the spatial context module, we adopt the
same structure as the quantree-partition-based context mod-
ule [14], which predicts the probability using the hyper prior
and the previously decoded parts of ŷ.

2. Experiments
2.1. Perceptual Metrics

We assess the visual quality using reference perceptual met-
rics LPIPS [10] and DISTS [4], along with no-reference
perceptual metrics FID [7] and KID [2]. Additionally, we
include PSNR and MS-SSIM [22] for completeness.

Limitations of Pixel-Wise Metrics. It is worth noting
that the pixel-level distortion metrics such as PSNR, MS-
SSIM, and LPIPS have inherent limitations when evaluat-
ing image compression at ultra-low bitrates. These metrics
prioritize pixel accuracy over the semantic consistency or
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Figure 2. Structure of the transform coding module in the latent space.

texture realism, as also discussed in [4, 13]. We demon-
strate this limitation with an example in Figure 1. Clearly,
the image on the right is perceptually superior to the one
in the middle, despite having worse PSNR, MS-SSIM, and
LPIPS scores. In contrast, the image-level metric DISTS
provides a more accurate assessment of image quality. For
this reason, our primary focus in this paper is on DISTS,
FID, and KID rather than PSNR, MS-SSIM, and LPIPS.

Measurement of FID and KID. For the facial image
dataset CelebAHQ[11], FID and KID are directly calcu-
lated on all 30,000 images with a resolution of 512 × 512.
For natural images, following established practices in gen-
erative image compression methods [17, 18], we measure
them by splitting the image into 256×256 patches. Specifi-
cally, we split a H × W image into ⌊H/256⌋ · ⌊W/256⌋
patches, and then shift the extraction origin by 128 pix-
els in both dimensions to extract another (⌊H/256⌋ − 1) ·
(⌊W/256⌋−1) patches. This process yields 28,650 patches
for the CLIC2020 test set [20] and 6,573 patches for the
DIV2K validation set [1]. Following [17, 18], we omit FID
and KID on Kodak [12] since only 192 patches are gener-
ated from the 24 images.

2.2. Quantitative Results

In this section, we present additional comparison results. In
Figure 7, we compare GLC with other methods VVC [21],
TCM [16], EVC [6], FCC [9], Text+Sketch [13], HiFiC [17]
and MS-ILLM [18] on Kodak [12] and DIV2K validation
set [1]. Figure 8 displays results on PSNR and MS-SSIM.

Figure 3. Comparison results on MS-COCO 30K.

Despite the limitations of these pixel-space metrics in eval-
uating perceptual quality, which has been discussed in Sec-
tion 2.1, they are still included for completeness. Results
for Text+Sketch [13] on Kodak are not shown in the fig-
ure due to its significant deviation from other curves, with
PSNR=11.97dB and MS-SSIM=0.3127 at BPP=0.0289.

In addition, we compare our GLC with recent works
HFD [8] and PerCo [3], along with MS-ILLM, on the MS-
COCO 30K dataset [15]. Following the methodology of [8],
we select the same images as them from the 2014 valida-
tion set to generate 256 × 256 patches. To match the qual-
ity range of their models, we further train a codec around
0.12 bpp for comparison (the correspondencing latent auto-
encoder has f = 1

8 and M = 256). As shown in Fig. 3, our
model exhibits significant performance improvement.

2.3. Visual Results

We provide visual comparisons with other methods on Ko-
dak (Figure 9), CelebAHQ (Figure 10), CLIC2020 and



0.0172 bpp 0.0197 bpp 0.0244 bpp 0.0279 bpp

Original GLC

0.0192 bpp 0.0219 bpp 0.0269 bpp 0.0313 bpp

Figure 4. Examples of rate-variable compression of GLC using a single model.

Table 2. Complexity comparison for facial image on CelebAHQ
with a resolution of 512 × 512.

Model Latency (ms) Params BD-DISTSEnc. Dec.

MS-ILLM 31.4 39.7 181 M 0.070
GLC 19.2 26.6 92 M 0

DIV2K (Figure 11 and 12). These comparisons reveal that
GLC significantly outperforms other methods in both fi-
delity and realism. Additionally, we show the rate-variable
characteristic of GLC in Figure 4. As the bitrate increases,
GLC enhances semantic consistency and produces more in-
tricate textures, which illustrates the impact of latent-space
compression on visual quality. It should be noted that rate-
variable compression is a core functionality for a practical
image compression application.

2.4. Complexity

We compare the complexity of GLC with previous SOTA
methods using a NVIDIA Tesla A100 GPU. The results of
facial image compression on CelebAHQ are presented in
Table 2, where GLC achieves a 0.070 lower BD-DISTS
value and less latency compared to MS-ILLM. The re-
sults for natural image compression on Kodak are shown
in Table 3, where GLC achieves a 0.047 lower BD-DISTS
value and comparable latency compared to MS-ILLM, and
achieves a 0.140 lower BD-DISTS value and much less la-
tency compared to Text+Sketch. It is worth note that we do
not consider the cost of the caption generation process in
Text+Sketch.

Table 3. Complexity comparison for natural image on Kodak with
a resolution of 512 × 768.

Model Latency (ms) Params BD-DISTSEnc. Dec.

Text+Sketch 2.0×104 1.9×104 409 M 0.140
MS-ILLM 41.8 53.5 181 M 0.047

GLC 37.1 58.6 105 M 0

Original

MS-ILLM
0.0543 bpp

GLC
0.0409 bpp

TCM
0.0797 bpp

Figure 5. Generalization test on a screen image.

3. Discussion on Limitations

While the proposed GLC demonstrates superior perfor-
mance in natural and facial images, its generalization ca-
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Style Image 1

Restoration Application Stylization Application

0.0312 bpp

0.0293 bpp

Style Image 2

0.0344 bpp

0.0311 bpp

Figure 6. Examples of the restoration and stylization application implemented on GLC pipeline. The distortion is Gaussian noise with
σ = 20. The first style image is sourced from the Wikiart dataset [19], and the second is The Scream by Edvard Munch, 1893.

pability is not always satisfactory. For instance, it may not
achieve comparable quality for screen images, which is a
common but significant challenge for image compression.
As shown in Figure 5, GLC, while producing clearer results
than TCM and MS-ILLM in text regions, still falls short
in generating straight grid lines in the background. In the
future, we hope this problem can be solved by enhancing
the generalization capability of the generative latent auto-
encoders or employing a more suitable training strategy for
GLC.

4. Applications

In this section, we demonstrate the details of the proposed
restoration application and stylization application imple-
mented on GLC pipeline.

Restoration Application. This application integrates
the restoration task into a compression system, enabling
users to compress a distorted image directly into codes and
then decode it for a restored reconstruction. To accomplish
it, we train a restoration encoder to map the distorted im-
ages xd into clean latents lc. The structure of this encoder is
the same as the generative latent encoder used in the com-
pression task. Visual results for our restoration application
are provided in the middle of Figure 6, where the images
are distorted by adding Gaussian noise with σ = 20.

Stylization Application. This application integrates
the style transfer task into the compression system, allow-
ing users to decode images with different styles. This is
achieved by training a stylization decoder to replace the la-

tent decoder, which is supervised by both content loss and
style loss [10]. As depicted in the right of Figure 6, the
proposed stylization application can decode codes into dif-
ferent styles.
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